High π-Facial and exo-Selectivity for the Intramolecular Diels-Alder Cycloaddition of Dodeca-3,9,11-trien-5-one Precursors to 2-epiSymbioimine and Related Compounds

Ming Xiang, ${ }^{\dagger}$ Yiwei $W \mathrm{u},{ }^{\dagger}$ Jason P. Burke, ${ }^{\ddagger, \delta}$ and Jason J. Chruma*, ${ }^{*}$
${ }^{\dagger}$ Key Laboratory of Green Chemistry \& Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
${ }^{\dagger}$ Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States

(5) Supporting Information

ABSTRACT: An unconstrained exocyclic stereogenic center and a removable trimethylsilyl group are combined to induce high π-facial selectivity and near-exclusive exo-selectivity in the intramolecular Diels-Alder cycloaddition of dodeca-3,9,11-trien-5-ones. This strategy provides direct access to polysubstituted trans-1-decalones related to the symbioimines in good yield and acceptable diastereoselectivity.

INTRODUCTION

The intramolecular Diels-Alder (IMDA) cycloaddition is a powerful and atom-economical tool for the stereoselective construction of complex polycyclic natural products and natural product-like frameworks. ${ }^{1}$ In spite of intense worldwide investigations, there still remains unconquered territories in the IMDA methodological domain. We have used the originally proposed biosynthesis of the tricyclic framework present in the symbioimine family of iminium alkaloids as an inspiration to explore some of these remaining holes in the IMDA tactic. ${ }^{2}$ Herein, we report on the use of a trimethylsilyl group as a removable stereocontrol element to affect the highly exoselective type I IMDA cyclization of dodeca-3,9,11-trien-5-ones. Additionally, we provide further support to our previous observations that a single unconstrained exocyclic stereogenic center is sufficient to effectively control the π-facial selectivity in these cycloadditions. ${ }^{2 a}$ Combining these two stereocontrol elements provides uniquely direct and stereoselective access to substituted trans-1-decalones.

Uemura and co-workers isolated (+)-symbioimine ${ }^{3}$ and (+)-neosymbioimine ${ }^{4}$ from a symbiotic dinoflagellate Symbiodinium sp. colonizing a marine flatworm Amphiscolops sp. While no biological activity has been reported for its 7,10dimethylated congener, (+)-symbioimine is known to exhibit moderately selective COX-2 inhibition and promising antiosteoclastogenic activity. As proposed by the original isolators, the tricyclic iminium core of the symbioimines could arise from either a cascade involving an exo-chair IMDA cycloadditon of (E)-enone $\mathbf{1}$ and imine cyclization or an endo-selective IMDA reaction of dihydropyridinium 2 followed by epimerization at C-4 (Scheme 1). Snider ${ }^{5}$ and Thomson ${ }^{6}$ both employed the dihydropyridinium route in their respective syntheses of

Scheme 1. Proposed Biosyntheses of the Symbioimines

symbioimine. These groups noted, however, that the dihydropyridinium intermediate is prone to disproportionation and other side reactions, thus severely restricting the yield of the key IMDA cycloaddition. ${ }^{8}$ The other proposed biosynthetic route to the tricyclic core is essentially unprecedented on at least two fronts. First, the π-facial selectivity for the IMDA reaction toward $(+)$-symbioimine ($\mathrm{R}=\mathrm{H}$) must be controlled exclusively by a single unconstrained exocyclic stereocenter. While there are several examples of rotationally restricted exocyclic chirality centers successfully governing the π-facial selectivity for related trienone IMDA substrates, ${ }^{5-7}$ previous attempts with only freely rotating exocyclic stereocenters, such as that found in 1, typically fail to elicit appreciable diastereoselectivity in type I IMDA cycloadditions. ${ }^{7 a}$ More importantly, when all-trans trienones such as $\mathbf{1}(\mathrm{R}=\mathrm{H})$ undergo type I IMDA cycloadditions, they typically proceed via

[^0]an endo transition state instead of the requisite exo-chair pathway. ${ }^{1 \mathrm{a}, 9}$ Yamamoto demonstrated that bulky aluminum phenoxide Lewis acids can encourage exo-selective IMDA reactions of related (E, E, E)-trienones. ${ }^{10}$ This strategy is limited, however, to substrates possessing relatively electron-rich diene components. Unfortunately, the 3,5-dihydroxybenzene substituent in 1 (depicted as "Ar" in Scheme 1) deactivates the diene fragment while providing opportunities for competing intramolecular Friedel-Crafts-type reactions with the ketone moiety under Lewis acidic conditions. ${ }^{5,11}$ In short, methods for the conversion of relatively deactivated (E, E, E)-trienones such as $\mathbf{1}$ into the corresponding trans-deca-6-en-1-ones via an exo transition state and with high π-facial selectivity are currently absent in the rich IMDA repertoire.

RESULTS AND DISCUSSION

Our initial attempts to address these limitations involved the Lewis acid-mediated type I IMDA reaction of (E, E, E)-trienones $\mathbf{3 a - c}$ (Scheme 2). ${ }^{2 \mathrm{a}}$ As expected, the cycloadditions all

Scheme 2. Previous Studies ${ }^{2 a}$

$(\pm)-\mathbf{3 a}(\mathrm{R}=\mathrm{NHBoc})$
$(+)-3 \mathrm{~b}$ ($\mathrm{R}=\mathrm{OPiv}$)
(+)-3c ($\mathrm{R}=\mathrm{OTBDPS}$)

(endo T.S.)

(\pm)-4a ($\mathrm{R}=$ NHBoc, $88 \%, \mathrm{dr}>20: 1$)
(+)-4b ($\mathrm{R}=$ OPiv, 52%, dr 4.5:1)
(+)-4c (R = OTBDPS, 76\%, dr 3:1)
proceeded via an endo transition state. Dimethylaluminum chloride proved to be the best Lewis acid mediator. Use of Yamamoto's relatively less Lewis acidic bulky aluminum phenoxide reagents ${ }^{10}$ in hopes of favoring the exo product failed to afford any conversion of N-Boc-protected $3 \mathbf{3}$. Surprisingly, the endo-selective cycloaddition of 3a afforded essentially one single diastereomer $\mathbf{4 a}$, indicating that it is possible for a single unconstrained exocyclic stereogenic center to dictate the π-facial selectivity for a type I IMDA reaction of $1,7,9$-decatrien-3-ones. This remarkable π-facial selectivity was highly dependent on the nature of the R group born in trienones 3. While Boc-protected amine 3a cyclized to essentially a single diastereomer, the corresponding protected alcohols 3b and 3c demonstrated markedly lower diastereoselectivities ($d r$ 4.5:1 for $\mathbf{4 b}$ and 3:1 for $\mathbf{4 c}$). In all cases, the major diastereomer is doubly epimeric to (+)-symbioimine at C-3 and C-4. All attempts to affect a similar endo-selective IMDA cycloaddition of the corresponding (Z)-enones, so as to obtain the symbioimine stereochemistry, resulted in complete isomerization back to (E)-enones $\mathbf{3}$ prior to any IMDA cycloaddition.

While our previous studies were the first to successfully address the π-facial selectivity issue, the matter of promoting the exo transition state remained elusive. To overcome this hurdle, we were inspired by reports first from Boeckman and later from Roush in which they both employed a trimethylsilyl (TMS) moiety as a removable stereodirecting group to alter the diastereoselectivity for the endo-selective IMDA cyclization of externally activated undeca-2,8,10-trienoates. ${ }^{12}$ While this tactic had yet to be used for inducing an exo-selective IMDA process, we hypothesized that incorporating a TMS group onto C-10 (symbioimine numbering) of our internally activated trienone

IMDA precursor should destabilize the endo transition states via steric interactions with the carbonyl-Lewis acid complex (Scheme 3). ${ }^{13,18}$ Additionally, the C-10 TMS group should

Scheme 3. Two Potential Transition State Conformations ${ }^{18}$

encourage the diene fragment to adopt the necessary s-cis conformation. ${ }^{14}$ Finally, we chose to maximize the stereodirecting effect of the exocyclic chirality center without sacrificing the ease of endgame manipulations by switching the Boc group present in 3 to a larger benzophenone imine moiety.

Synthesis of the requisite trienone IMDA precursor 14 involved the modular coupling of three key fragments (Scheme 4). First, Suzuki-Miyaura cross coupling of vinyl iodide 5

Scheme 4. Synthesis of IMDA Precursor (-)-14

(available in two steps from hex-5-yn-1-ol) ${ }^{15}$ and commercially available boronate ester 6 afforded dienol 7 in a usable isolated yield. ${ }^{16}$ Oxidation to the corresponding aldehyde 8 with IBX proceeded smoothly. The other necessary fragment, chiral iminoalkyne 13, was obtained in six steps and 54% overall yield from 9 (available in three steps from (S)-(+)-Roche ester). ${ }^{2 \mathrm{a}}$ Finally, coupling between the lithium alkynide of 13 and aldehyde 8 , followed by oxidation of the resultant alcohol, and partial hydrogenation of the triple bond afforded the desired
(Z)-enone 14 in 57% isolated yield over the three steps. Based on our previous studies, ${ }^{2 a}$ it was presumed that Z-to- E enone isomerization would precede IMDA cycloaddition, so (Z)enone 14 was viewed as a viable precursor to the corresponding (E)-enone 15 .

With trienone 14 in hand, we explored its Lewis acidmediated IMDA cyclization at various temperatures (Table 1).

Table 1. IMDA Cyclization of Trienone (-) -14^{a}

$$
\begin{aligned}
& (-)-\mathbf{1 4} \quad\left[\mathrm{Ar}=3,5-(\mathrm{MeO})_{2} \mathrm{Ph}\right]
\end{aligned}
$$

${ }^{a}$ Reaction conditions: $\mathrm{Me}_{2} \mathrm{AlCl}$ (1.2 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.03 M).
${ }^{b}$ Isolated yield after column chromatography for a single run. ${ }^{c}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction product. ${ }^{d}$ Starting (Z)-enone 14 recovered in 22%. ${ }^{e} 1.5$ equiv of $\mathrm{Me}_{2} \mathrm{AlCl}$ used.

Similar to our previous studies, ${ }^{2 a}$ only partial enone isomerization ($14 \rightarrow 15$) was observed at $-78^{\circ} \mathrm{C}$ (entry 1). Letting the reaction warm up to $-30^{\circ} \mathrm{C}$ over 12 h led to the formation of a single IMDA product 16 in 43% isolated yield along with 14% of (E)-enone 15 (entry 2). The relative stereochemistry within the trans-1-decalone unit of 16 was readily deduced by standard 2D-NMR techniques (Table S1 in the Supporting Information). ${ }^{17}$ Determination of the absolute stereochemistry required conversion to the tricyclic imine 19 and comparison to known compounds. ${ }^{3,6}$ This was accomplished in high overall yield by selective removal of the vinyl TMS group with borofluoric acid, followed by transimination with trifluoroacetic acid and BBr_{3}-mediated cleavage of the phenolic methyl ethers (Scheme 5). The resulting product 19 is pseudoenantiomeric to (+)-symbioimine; only the initial chirality center at C-2 matches the natural product configuration. This is most evident in the ${ }^{1} \mathrm{H}$ NMR analysis of $\mathbf{1 9}$. The protons on the C-2 methyl group are shifted upfield significantly in 19 versus (+)-symbioi-

Scheme 5. Synthesis of Tricyclic Imine (-)-19

mine ($\delta 0.13$ vs 1.05 ppm , respectively), indicating that this moiety is directly across from the π-face of the aromatic ring. As designed, the TMS group in trienone 14 directs the IMDA reaction to proceed preferentially via an exo transition state (Scheme 3). ${ }^{18}$ The exquisite π-facial selectivity induced by the C-2 chirality center is identical to that seen in the endo-selective IMDA cycloaddition of (E)-enone 3a (Scheme 2). ${ }^{2 a}$ Performing the IMDA reaction at $-20^{\circ} \mathrm{C}$ gave a similar isolated yield of cycloaddition products with a slight reduction in the diastereomeric ratio (Table 1, entry 3). The best isolated yields with an acceptable exo:endo ratio were obtained by performing the reaction at ambient temperature (entry 4). The minor endo product was never isolated in sufficient quantity or purity to allow for proper determination of its absolute stereochemistry. When (E)-enone 15 was subjected to the reaction conditions, results identical to those observed with (Z)-enone 14 were obtained, corroborating our assumption that enone isomerization most likely precedes IMDA cycloaddition.

To investigate the influence of a stereocenter in the connecting chain on the diastereoselectivity of the exo-selective IMDA reaction, we synthesized trienone 25 from known propyl ester 20 (available via the enzymatic desymmetrization of 3methylglutaric anhydride) ${ }^{19}$ following a strategy similar to that used for $\mathbf{1 4}$ (Scheme 6). The carboxylic acid moiety in $\mathbf{2 0}$ was

Scheme 6. Synthesis of IMDA Precursors 25 and 26

selectively converted into the corresponding gem-dibromoalkene 21 in three steps and 77% yield. Reduction of the ester and conversion to the corresponding TMS-alkyne 22 proceeded smoothly. Syn-selective hydroiodination of alkyne 22 afforded vinyl iodide 23 in $72 \%{ }^{15}$ Suzuki-Miyaura cross coupling between iodide 23 and boronate ester 6, followed by oxidation of the primary alcohol, afforded dienal 24 in 57\% over the two steps. Coupling between the resultant aldehyde 24 and the lithium alkynide of $(-)-13$, followed by oxidation and partial hydrogenation, as before, completed the synthesis of (-)-25 in 47% over the three steps. The C-2 epimer (+)-26 was obtained following an identical procedure employing the lithium alkynide of $(+)-13$, which was available from the (R) -(-)-Roche ester.

Table 2. IMDA Cycloaddition of Trienone (-)-25

entry	conditions		$\mathbf{2 7 : 2 8 : 2 9}{ }^{a}$
1	$\mathrm{Me}_{2} \mathrm{AlCl}(1.5$ equiv $), \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 5 \mathrm{~h}$	$1: 2.4: 2.7$	Yield (\%)
2	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\left(1.5\right.$ equiv) $, \mathrm{CH}_{2} \mathrm{Cl}_{2},-10^{\circ} \mathrm{C}, 3.5 \mathrm{~h}$	$2: 1: 0.3$	65^{b}

${ }^{a}$ Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the crude reaction mixture. ${ }^{b}$ Combined isolated yields of $27-29$ after column chromatography for a single run. ${ }^{c}$ Combined isolated yield of exo products 27 and 28 only.

When 25 was treated with $\mathrm{Me}_{2} \mathrm{AlCl}$ at $-20{ }^{\circ} \mathrm{C}$, one endo (29) and two exo-IMDA products (27 and 28) were isolated in 85% combined yield as a 2.7:1:2.4 ratio of diasasteromers, respectively (Table 2, entry 1). When $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ was used as the Lewis acid, the exo:endo ratio increased dramatically and there was a switch in diastereoselectivity now favoring exo-product 27 (entry 2). ${ }^{26}$ Based on our previous observations that Z-to-E enone isomerization seems to precede cycloaddition, it is assumed that all three cycloaddition products arise from the corresponding (E)-enone of 25 . The sole endo product 29 is most likely the result of a chair transition state bearing an equatorial C-7 methyl group, but π-facial selectivity counter to the C-2 stereogenic center (Scheme 7). The relatively low

Scheme 7. Transition State Conformation for Formation of endo Product (+)-29

selectivity between the two exo products 27 and 28 indicates that there is a stereocontrol mismatch between the exocyclic C2 chirality center and the endocyclic C-7 methyl group. If the connecting chain adopts a chair conformation in the transition state, ${ }^{18}$ our previous results suggest that the π-facial selectivity induced by the C-2 stereocenter would require the C-7 methyl group to reside in an axial position, leading to 28 (Table 2, inset top). The other diastereomer 27 could arise from an alternate chair conformation with opposite π-facial approach but an equatorial C-7 methyl group. To further explore the relationship between these two stereocontrol elements, we submitted trienone (+)-26, which is the C-2 epimer of (-)-25,
to the IMDA reaction conditions (Scheme 8). In this "matched" case, only one IMDA product (30) was observed and isolated in 71% yield.

Scheme 8. IMDA Cycloaddition of (+)-26

Inspired by the revelation that the C-10 TMS exo-IMDA product 27 contains the same absolute stereochemistry as (+)-neosymbioimine, we attempted to directly access this natural product architecture via the Lewis acid-mediated IMDA cycloaddition of C-10 methylated trienone 34. Synthesis of the requisite trienone 34 began with Suzuki-Miyaura cross coupling between gem-dibromoalkene 21 and boronate ester 6 to afford bromodiene 31 (Scheme 9). The best yield (71\%) for this cross coupling reaction was obtained when $\mathrm{Tl}_{2} \mathrm{CO}_{3}$ was used as a base. After considerable experimentation, alternate reaction conditions that avoided the use of superstoichiometric amounts of toxic thallium salts but still afforded acceptable isolated yields of the diene 31 were eventually discovered. Namely, the combination of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(3 \mathrm{~mol} \%)$ and tri-2furylphosphine (TFP, $16 \mathrm{~mol} \%$) as catalyst and cesium carbonate as base in a $4: 1$ mixture of dioxane and water generated diene 31 in 66% yield at gram scale. Palladiumcatalyzed Negishi cross coupling between bromodiene 31 and dimethylzinc followed by LiAlH_{4}-mediated reduction of the ester moiety afforded alcohol 32 in 93% yield over the two steps. Oxidation of the primary alcohol with IBX in DMSO

Scheme 9. Synthesis of C-10 Methylated Trienone (-)-34

afforded aldehyde 33, which was then converted to the desired (Z)-trienone 34 in three steps and 45% overall yield following procedures identical to those used to obtained enones 14 and 25.

In contrast to our observations with the Lewis acid-mediated IMDA of TMS-trienones $\mathbf{1 4 / 1 5}$ (Table 1), 25 (Table 2), and 26 (Scheme 8), treatment of C-10 methylated 34 with $\mathrm{Me}_{2} \mathrm{AlCl}$ provided a complex mixture of all four possible diastereomers, from which only the highly predominant endo product 35 could be isolated cleanly and in moderate yield (Scheme 10).

Scheme 10. IMDA Cycloaddition of (-)-34

Apparently, the C-10 methyl group in 34 is not large enough to induce a preference for the exo transition states like the bulkier TMS group in related trienones 25 and $26 .{ }^{27}$ As with the formation of endo adduct 29, the major product 35 could arise via an endo-chair transition state in which the C-7 methyl group overwhelms the influence of the C-2 stereocenter (c.f. Scheme 7). Attempting the Lewis acid-mediated IMDA reaction at a lower temperature $\left(-15^{\circ} \mathrm{C}\right)$ only resulted in isomerization to the corresponding (E)-enone without any cycloaddition.

In summary, we have demonstrated that the combination of a bulky TMS substituent on the diene fragment and a single unconstrained exocyclic chirality center is sufficient to induce high exo selectivity and diastereoselectivity in the Lewis acidmediated IMDA cycloaddition of internally activated dodeca-3,9,11-trien-5-ones. Chirality centers in the connecting chain complicate the diastereoselectivity without canceling the high exo-selectivity. As an additional benefit, our studies highlight the remarkable utility of the benzophenone imine as a
protection for primary amines. ${ }^{20}$ We demonstrated that this moiety can survive Lindlar catalytic hydrogenation, both strongly basic and Lewis acidic conditions, various oxidants, and even aqueous borofluoric acid, yet it can be removed readily with 0.5 M TFA in THF. Overall, our efforts provide direct access to previously unavailable epimers of the symbioimine tricyclic imine framework requisite for ongoing structure-activity relationship studies

EXPERIMENTAL SECTION

General Methods. All nonaqueous reactions were performed in oven-dried flasks or vials under an atmosphere of dried and deoxygenated argon with dry solvents and magnetic stirring, unless stated otherwise. All solvents were dried by storing over activate $3 \AA$ molecular sieves for at least 48 h and sparged with dried and deoxygenated argon gas for at least $30 \mathrm{~min} .{ }^{21}$ Chiral vinyl dibromide 9 was obtained as a single enantiomer $(\geq 98 \% e e)$ in three steps from $(S)-(+)$-Roche ester following previously described methods. ${ }^{2 a, 22}$ The enantiomer of 9 , required for the synthesis of $(+)-13$ and $(+)-26$ was obtained from $(R)-(-)$-Roche ester following identical procedures. Commercially available boronate ester 6 was also obtained in large scale from the hydroboration of the corresponding alkyne using pinacol borane and Schwartz's catalyst ($\mathrm{HZrCp}_{2} \mathrm{Cl}$). Dienes (+)-31 and (+)-32 were previously reported by our group. ${ }^{25}$ All other reagents were purchased from commercial sources and used as received. All chromatography was performed with indicated solvents and $60 \AA 230-400$ mesh silica gel. Unless otherwise noted, all yields in the main text refer to average isolated yields after column chromatography of at least three separate runs at different scales. Accordingly, these yields may differ from the specific examples provided below. Melting points are uncorrected. Infrared spectra were obtained using a thin film deposited on freshly made KBr disks; only strong and functional group-specific peaks are reported (in cm^{-1}). Optical rotation was determined on a 10 cm length polarimeter cell; all $[\alpha]_{\mathrm{D}}$ values are given in $10^{-1} \mathrm{degcm}^{2} \mathrm{~g}^{-1}$ at $20^{\circ} \mathrm{C}$. All NMR spectra were taken on a 400 or 500 MHz spectrometer at 300 K , as indicated. Chemical shifts are reported in $\delta(\mathrm{ppm})$ units using residual solvent peak as a standard. ${ }^{23}$ Initial diastereomeric ratios determined from ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixtures. High resolution mass spectra obtained using an LCMS-IT-TOF.
(5Z,7E)-8-(3,5-Dimethoxyphenyl)-6-(trimethylsilyl)octa-5,7-dien1 -ol (7). Vinyl iodide $5(1.56 \mathrm{~g}, 5.23 \mathrm{mmol})^{15}$ and boronate ester 6 $(1.97 \mathrm{~g}, 6.79 \mathrm{mmol}, 1.3$ equiv) were dissolved in a mixture of THF (18 $\mathrm{mL})$ and deionized $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$. Argon was bubbled through the solution for 30 min , then $\mathrm{KOH}(0.4 \mathrm{~g}, 7.13 \mathrm{mmol}, 1.36$ equiv) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(900 \mathrm{mg}, 0.78 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ were added. The resulting mixture was stirred at rt for 1 h and then $50^{\circ} \mathrm{C}$ for 3 h . After cooling to rt , the reaction was diluted with 50 mL EtOAc, then washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The crude product was purified by flash chromatography ($20 \% \mathrm{EtOAc} /$ hexane) to give diene $7(1.16 \mathrm{~g}, 3.47 \mathrm{mmol}, 66 \%)$ as a pale brown oil: $\mathrm{R}_{\mathrm{f}}=0.33(20 \%$ EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.77$ (dd, $J=15.8$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{dd}, J=10.9,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.35-6.31(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 3.67(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{q}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 1 \mathrm{H})$, $0.25-0.22(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.8,145.1$, 140.4, 138.5, 135.5, 127.1, 104.1, 99.2, 62.8, 55.2, 32.2, 31.9, 26.2, 0.9; IR (thin film) ν 3440, 2394, 1590, 1153; HRMS (E+) $\mathrm{m} / \mathrm{z} 357.1851$ $(\mathrm{M}+\mathrm{Na})^{+} ;$calculated mass for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NaO}_{3} \mathrm{Si}^{+}: 357.1856$.
(5Z,7E)-8-(3,5-Dimethoxyphenyl)-6-(trimethylsilyl)octa-5,7-dienal (8). To a solution of alcohol $7(1.15 \mathrm{~g}, 3.44 \mathrm{mmol})$ in 12 mL DMSO at rt was added IBX ($1.44 \mathrm{~g}, 5.15 \mathrm{mmol}, 1.5$ equiv) and the solution was stirred at rt for 4 h . The resulting mixture was then diluted with saturated aq NaHCO_{3} and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extract was washed with 5% aq LiCl , dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo, and purified by flash chromatography ($20 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane) to afford diene $8(1.06 \mathrm{~g}, 3.19 \mathrm{mmol}, 93 \%)$ as a pale yellow oil: $\mathrm{R}_{\mathrm{f}}=0.38$ $\left(20 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.80(\mathrm{t}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.38(\mathrm{~d}, J$
$=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 6 \mathrm{H}), 2.50(\mathrm{tt}, J=7.3,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{dd}, J=14.9,7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.78(\mathrm{p}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.23(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 202.4,161.0,143.6,140.2,139.9,135.2,127.7,104.4,99.4$, 55.5, 43.5, 31.3, 22.4, 0.7; IR (thin film) ע 2953, 2837, 2720, 1725, 1590; HRMS (E+) m/z $355.1691(\mathrm{M}+\mathrm{Na})^{+}$; calculated mass for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NaO}_{3} \mathrm{Si}^{+}: 355.1700$.
(R)-4,4-Dibromo-2-methylbut-3-en-1-ol [(-)-10]. To a stirred solution of $9(14.8 \mathrm{~g}, 30.7 \mathrm{mmol})^{2 \mathrm{a}, 22}$ and 160 mL THF in a Nalgene screw-top plastic bottle at $0{ }^{\circ} \mathrm{C}$ was added dropwise tetrabutylammonium fluoride (1.0 M in THF, $46.0 \mathrm{~mL}, 46.0 \mathrm{mmol}, 1.5$ equiv) and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 4 h . The reaction was then quenched with 150 mL saturated aq NaHCO_{3}, extracted with $\mathrm{Et}_{2} \mathrm{O}$ (4 $\times 150 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and purified by flash chromatography $\left(20 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $)$ to provide alcohol (-)-10 (7.05 g, 28.9 mmol , 94%) as a colorless oil. The resulting product was spectroscopically identical to the known enantiomer. ${ }^{23,24}$ NOTE: Prolonged reaction times, higher temperature, and more TBAF all resulted in the competitive elimination of HBr to form the corresponding bromoalkyne. $\mathrm{R}_{\mathrm{f}}=0.32$ ($20 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.29(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.45(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.61(\mathrm{~m}$, $1 \mathrm{H}), 1.59(\mathrm{~s}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 140.9,89.7,66.3,41.2,15.5 ;[\alpha]_{\mathrm{D}}=-0.45\left(c 0.67, \mathrm{CHCl}_{3}\right)$.
(R)-4-Azido-1,1-dibromo-3-methylbut-1-ene [(+)-11]. To a stirred solution of $(-)-10(3.4 \mathrm{~g}, 13.9 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{~mL}, 71.7 \mathrm{mmol}, 5.2$ equiv), and DMAP ($86 \mathrm{mg}, 0.8 \mathrm{mmol}, 5 \mathrm{~mol} \%$) in $20 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 0 ${ }^{\circ} \mathrm{C}$ was added dropwise via addition funnel a solution of $p-\mathrm{TsCl}(4.03$ $\mathrm{g}, 21.14 \mathrm{mmol}, 1.5$ equiv) in $30 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$. The reaction then was allowed to warm up to $25^{\circ} \mathrm{C}$ and stirred at that temperature overnight. The resulting reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$, washed sequentially with saturated aq $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}$ $(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated in vacuo, and carried on directly to the next step without further purification.

To a stirred solution of the resulting p-toluenesulfonate ester in 40 mL DMF at ambient temperature was added tetrabutylammonium iodide ($259 \mathrm{mg}, 0.7 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and sodium azide ($3.66 \mathrm{~g}, 56.3$ mmol, 4 equiv). The resulting mixture was heated to $50^{\circ} \mathrm{C}$ and stirred at that temperature overnight. After cooling back to rt, the reaction was diluted with $150 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$, washed sequentially with $\mathrm{H}_{2} \mathrm{O}(3 \times 50$ $\mathrm{mL})$ and brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and purified by flash chromatography (hexanes) to provide azide (+)-11 (2.83 g, 10.5 mmol, 76%) as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.51$ (hexane); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.26(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.85-2.68(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 140.1,90.5,55.6,38.7,16.8$; IR (thin film) ע 2971, 2929, 2870, 2099, 1616, 1454, 1257; $[\alpha]_{\mathrm{D}}=+1.25\left(c 0.56, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HRMS $(\mathrm{E}+) \mathrm{m} / z 243.9126\left(\mathrm{M}+3 \mathrm{H}-\mathrm{N}_{2}\right)^{+}$; calculated mass for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{~N}^{+}$: 243.9154. NOTE: The azide decomposes to the corresponding amine under HRMS conditions.
(R)-4,4-Dibromo-2-methylbut-3-en-1-amine [(+)-12]. To a solution of azide $(+)-1 \mathbf{1}(5.9 \mathrm{~g}, 21.94 \mathrm{mmol})$ in 70 mL dry THF at rt was added in one portion $\mathrm{PPh}_{3}(23 \mathrm{~g}, 87.75 \mathrm{mmol}, 4$ equiv). The resulting solution was heated to $50^{\circ} \mathrm{C}$ and stirred for $3 \mathrm{~d} . \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was then added and the resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for an additional 5 h . The resulting reaction mixture was concentrated in vacuo and immediately purified by flash chromatography $\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to provide amine $(+)-12(4.9 \mathrm{~g}, 20.8 \mathrm{mmol}, 92 \%)$ as a brown oil: $\mathrm{R}_{\mathrm{f}}=$ $0.28\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.21(\mathrm{~d}, \mathrm{~J}$ $=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.45(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 2 \mathrm{H})$, $1.01(\mathrm{dd}, J=6.7,1.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.3$, 89.1, 47.4, 42.2, 16.7; IR (thin film) $~ 3376,3290,2963,2926,2666$, 1611, 1456;:[$\alpha]_{\mathrm{D}}=+7\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); HRMS (E+) m/z 243.9122 $(\mathrm{M}+\mathrm{H})^{+}$; calculated mass for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{~N}^{+}$: 243.9154 .
(R)- N-(Diphenylmethylene)-2-methylbut-3-yn-1-amine [(-)-13]. Amine (+)-12 (4.72 g, 19.43 mmol) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and conc HCl was added dropwise to the stirred mixture until no additional solid formed. The solvent was removed in vacuo and the resulting solid was dried further under vacuum in the presence of $\mathrm{P}_{2} \mathrm{O}_{5}$ for 2 d . The resulting ammonium chloride salt was slurried in 35 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and benzophenone imine ($4 \mathrm{~mL}, 23.84 \mathrm{mmol}, 1.2$ equiv) was
added via syringe. ${ }^{20}$ The reaction mixture was stirred at rt for 2 d , filtered, and concentrated in vacuo. Purification of the resulting residue by flash chromatography ($1 \% \mathrm{Et}_{3} \mathrm{~N}$ in $2 \% \mathrm{EtOAc} /$ hexane) afforded the corresponding benzophenone imine ($7.75 \mathrm{~g}, 19.03 \mathrm{mmol}, 98 \%$) as a pale yellow oil: $\mathrm{R}_{\mathrm{f}}=0.54$ (5\% EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.83\left(\mathrm{dt}, J_{o}=8.0 \mathrm{~Hz}, J_{m}=3.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.14-7.00(\mathrm{~m}, 6 \mathrm{H})$, $6.90-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.29(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-3.13(\mathrm{~m}, 2 \mathrm{H})$, $2.97-2.82(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 168.5,143.1,140.2,137.4,132.1,130.2,128.9,128.8,128.2$, 128.0, 88.6, 58.0, 40.4, 17.1; IR (thin film) ν 3059, 2964, 2925, 1661, 1623, 1446, 1278; $[\alpha]_{\mathrm{D}}=-39\left(c 0.28, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HRMS (E+) m/z $407.9766(\mathrm{M}+\mathrm{H})^{+}$; calculated mass for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}^{+}$: 407.9781 .

To a solution of the resulting dibromoalkene $(1.9 \mathrm{~g}, 4.67 \mathrm{mmol})$ in 30 mL Et 2 O at $-78^{\circ} \mathrm{C}$ was added LDA (2 M solution in THF, 7 mL , 3 equiv). The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 8 h , then warmed to rt and quenched with solid $\mathrm{NH}_{4} \mathrm{Cl}$. NOTE: TLC never showed completion. The resulting mixture was filtered, concentrated in vacuo, and immediately purified by flash chromatography $\left(1 \% \mathrm{Et}_{3} \mathrm{~N}\right.$ in $2 \% \mathrm{EtOAc} /$ hexane) to provide the starting material (15% recovery) and alkyne (-)-13 (925 mg, $3.73 \mathrm{mmol}, 80 \%, 94 \%$ borsm) as a yellow oil: $\mathrm{R}_{\mathrm{f}}=0.48\left(5 \%\right.$ EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ $7.92-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.14-6.99(\mathrm{~m}, 6 \mathrm{H}), 6.93-6.87(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{dd}$, $\left.J_{\mathrm{AB}}=13.7 \mathrm{~Hz}, J_{\mathrm{AX}}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.37\left(\mathrm{dd}, J_{\mathrm{BA}}=13.7 \mathrm{~Hz}, J_{\mathrm{BX}}=7.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 3.04-2.91(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 168.4,140.3,137.3,132.1,130.2$, 129.0, 128.7, 128.2, 127.9, 87.9, 69.4, 59.4, 28.4, 19.1; IR (thin film) ν 3299, 2925, 1625, 1446; $[\alpha]_{\mathrm{D}}=-10.5\left(c 0.38, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HRMS (E+) $m / z 248.1426(\mathrm{M}+\mathrm{H})^{+}$; calculated mass for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}^{+}$: 248.1434.

The corresponding enantiomer, (S)-N-(diphenylmethylene)-2-meth-ylbut-3-yn-1-amine $[(+)-13]$, was made in an analogous manner starting from $(R)-(-)$-Roche ester: $[\alpha]_{\mathrm{D}}=+10\left(c \quad 0.18, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(R,3Z,9Z,11E)-12-(3,5-Dimethoxyphenyl)-1-((diphenylmethylene)-amino)-2-methyl-10-(trimethylsilyl)dodeca-3,9,11-trien-5-one [(-)-14]. To a solution of alkyne (-)-13 (2.32 g, 9.38 mmol$)$ in 12 mL THF at $-78{ }^{\circ} \mathrm{C}$ was added dropwise via syringe LDA (2 M in THF, $4.6 \mathrm{~mL}, 9.2 \mathrm{mmol}$) and the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h before warming up to rt . After stirring at rt for another 1 h , the reaction was recooled to $-78{ }^{\circ} \mathrm{C}$ and transferred via cannula to a solution of aldehyde $8(1.45 \mathrm{~g}, 4.36 \mathrm{mmol})$ in 10 mL THF at $-78^{\circ} \mathrm{C}$. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 5 h , then warmed to rt and quenched with solid $\mathrm{NH}_{4} \mathrm{Cl}$. This resulting mixture was filtered, concentrated in vacuo, and purified by flash chromatography $\left(1 \% \mathrm{Et}_{3} \mathrm{~N}\right.$ in $15 \% \mathrm{EtOAc} /$ hexane) to provide 44% recovery of alkyne 13 along with a diastereomeric mixture of propargylic alcohols $(2.43 \mathrm{~g}, 4.19$ $\mathrm{mmol}, 96 \%)$ as a yellow oil: $\mathrm{R}_{\mathrm{f}}=0.35(20 \% \mathrm{EtOAc} / \mathrm{Hex}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.88(\mathrm{dd}, J=6.6,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.04(\mathrm{~m}$, $6 \mathrm{H}), 7.01-6.94(\mathrm{~m}, 3 \mathrm{H}), 6.78(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=15.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.51(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{dd}, J=7.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ $(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{ddd}, J=13.5,6.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=$ $13.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 6 \mathrm{H}), 3.11-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.10(\mathrm{~m}$, $2 \mathrm{H}), 1.77-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.29(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.23(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 168.6,161.8,145.5,140.9,140.3,138.9$, 137.4, 135.7, 130.3, 129.0, 128.8, 128.5, 128.2, 127.9, 105.3, 104.9, 99.9, 88.6, 83.2, 62.5, 59.7, 54.9, 38.2, 32.2, 28.7, 26.1, 19.4, 0.8; HRMS (E+) m/z $580.3245(\mathrm{M}+\mathrm{H})^{+}$; calculated mass for $\mathrm{C}_{37} \mathrm{H}_{46} \mathrm{NO}_{3} \mathrm{Si}^{+}: 580.3242$.

The resulting diastereomeric mixture of alcohols (1.47 g, 2.53 mmol) was combined with N-methylmorpholine N-oxide (890 mg , $7.59 \mathrm{mmol}, 3$ equiv) in $17 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at rt. To this stirred solution was added over 30 min tetra-n-propylammonium perruthenate (220 $\mathrm{mg}, 0.63 \mathrm{mmol}, 25 \mathrm{~mol} \%)$ and the resulting mixture was stirred at rt for 24 h . The reaction was then diluted with 20 mL hexane and filtered through a plug of silica gel eluting with $50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes. The resulting filtrate was concentrated in vacuo and further purified by flash chromatography $\left(1 \% \mathrm{Et}_{3} \mathrm{~N}\right.$ in $15 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane $)$ to afford the corresponding alkynone $(1.16 \mathrm{~g}, 2.01 \mathrm{mmol}, 79 \%)$ as a pale yellow oil: $\mathrm{R}_{\mathrm{f}}=0.59(20 \% \mathrm{EtOAc} / \mathrm{Hex}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.86(\mathrm{dd}$, $J=6.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.04(\mathrm{~m}, 6 \mathrm{H}), 6.98-6.91(\mathrm{~m}, 3 \mathrm{H}), 6.78(\mathrm{~d}$, $J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.22(\mathrm{dd}, J=7.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 6 \mathrm{H}), 3.35-$
$3.29(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{~h}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dt}, J=14.5,7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 2.11 (dd, $J=15.0,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.75-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.21(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 186.4,169.0$, 161.8, 144.5, 140.8, 140.1, 139.7, 137.1, 135.5, 130.4, 128.96, 128.87, $128.6,128.5,128.4,127.98,104.9,100.0,96.1,82.1,58.5,54.9,45.2$, 31.5, 28.8, 24.5, 18.1, 0.7; IR (thin film) $\nu 2954,2210,1672,1622$, 1591, 1455; $[\alpha]_{\mathrm{D}}=-6\left(c 0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HRMS $(\mathrm{E}+) \mathrm{m} / z 578.3076$ $(\mathrm{M}+\mathrm{H})^{+}$; calculated mass for $\mathrm{C}_{37} \mathrm{H}_{44} \mathrm{NO}_{3} \mathrm{Si}^{+}$: 578.3085.

A mixture of the resulting alkynone ($1.15 \mathrm{~g}, 2.00 \mathrm{mmol}$), Lindlar's catalyst ($850 \mathrm{mg}, 0.4 \mathrm{mmol} \mathrm{Pd}, 0.2$ equiv), pyridine $(2.4 \mathrm{~mL}, 15$ equiv), and toluene (20 mL) was stirred vigorously at rt under a H_{2} atmosphere (balloon) for 24 h . NOTE: TLC never showed completion even after 48 h . The resulting mixture was filtered through Celite, concentrated in vacuo, and purified by flash chromatography ($1 \% \mathrm{Et}_{3} \mathrm{~N}$ in $10 \% \mathrm{EtOAc} /$ hexane) to provide enone (-)-14 ($900 \mathrm{mg}, 1.55 \mathrm{mmol}, 78 \%$) as a pale yellow oil: $\mathrm{R}_{\mathrm{f}}=$ 0.54 (15\% EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.86$ (dd, J $=6.7,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.06(\mathrm{~m}, 6 \mathrm{H}), 7.00(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ $(\mathrm{d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.52(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.04-5.98(\mathrm{~m}$, $1 \mathrm{H}), 5.89(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=5.4$, $4.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 6 \mathrm{H}), 2.28-2.15(\mathrm{~m}, 4 \mathrm{H}), 1.78-1.66(\mathrm{~m}, 2 \mathrm{H})$, $1.17(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.25(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ 199.8, 168.0, 161.8, 152.1, 145.1, 140.8, 140.4, 139.4, 137.5, 135.6, 130.1, 128.9, 128.7, 128.5, 128.2, 127.9, 126.2, 105.3, 104.9, 100.0, 59.7, 54.9, 43.6, 35.3, 31.8, 24.4, 18.6, 0.8; IR (thin film) $\nu 2955,1690$, 1592, 1381; $[\alpha]_{\mathrm{D}}=-69.5\left(c 0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HRMS (E+) m/z 580.3243 $(\mathrm{M}+\mathrm{H})^{+}$; calculated mass for $\mathrm{C}_{37} \mathrm{H}_{46} \mathrm{NO}_{3} \mathrm{Si}^{+}$: 580.3242 .

General Procedure for the Lewis Acid-Mediated IMDA Cycloaddition of Trienone (-)-14. To a solution of (Z)-enone $(-)-14(60 \mathrm{mg}, 103 \mu \mathrm{~mol})$ in $2 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at the indicated temperature (Table 1) was added via syringe $\mathrm{Me}_{2} \mathrm{AlCl}(0.9 \mathrm{M}$ in heptane, $130 \mu \mathrm{~L}, 1.12$ equiv) and the resulting yellow solution was stirred at the indicated temperature for the indicated amount of time (Table 1). The reaction was then quenched with saturated aq $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The resulting yellow residue was purified by flash chromatography ($1 \% \mathrm{Et}_{3} \mathrm{~N}$ in $10 \% \mathrm{EtOAc} /$ hexane) to provide cycloaddition product $(-)-16$ as white solid plus varying amounts of the (E)-enone $(-)-15$. The diastereomeric ratio for $(-)-16$ versus the corresponding endo adduct was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture prior to chromatography. When the reaction was conducted exclusively at $-78{ }^{\circ} \mathrm{C}$, only the starting material plus (E)-enone 15 were isolated. When the reaction was conducted at -78 ${ }^{\circ} \mathrm{C}$ and warmed up to $-30^{\circ} \mathrm{C}$ over $12 \mathrm{~h}, 16$ was the only cycloaddition product observed ($d r \geq 20: 1$), albeit in 43% isolated yield. The isolated yield for cycloaddition adduct 16 increased with reaction temperature (64% at $20{ }^{\circ} \mathrm{C}$) at the expense of diastereoselectivity (12:1 exo:endo at $20^{\circ} \mathrm{C}$).
(R,3E,9Z, $11 E$)-12-(3,5-Dimethoxyphenyl)-1-((diphenylmethylene)-amino)-2-methyl-10-(trimethylsilyl)dodeca-3,9,11-trien-5-one [(-)-15]. The (E)-enone (-)-15 was frequently isolated as a minor product to the above cycloaddition reaction: Pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.89-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.03(\mathrm{~m}, 6 \mathrm{H}), 6.99(\mathrm{~d}$, $\mathrm{J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.86(\mathrm{~m}, 3 \mathrm{H}), 6.81-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{dd}, \mathrm{J}$ $=15.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.52-6.49(\mathrm{~m}, 1 \mathrm{H}), 6.33(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.14-6.08(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.34(\mathrm{~m}, 6 \mathrm{H}), 3.34-3.24(\mathrm{~m}, 2 \mathrm{H}), 2.74-$ $2.58(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{dd}, \mathrm{J}=14.9,7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.82-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.04-0.99(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.25(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ 198.5, 168.3, 161.8, 150.0, 145.1, 140.8, 140.2, 139.4, 137.4, 135.6, 130.3, 129.6, 128.8, 128.5,128.4, 128.2, 127.9, 105.3, 104.9, 100.0, 59.1, 54.9, 39.7, 38.7, 31.9, 24.5, 17.5, 0.8; IR (thin film) $\nu 3442,2956,1591,1381 ;[\alpha]_{\mathrm{D}}=-4.3$ (c 0.49, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); HRMS (E+) m/z $580.3233(\mathrm{M}+\mathrm{H})^{+}$; calculated mass for $\mathrm{C}_{37} \mathrm{H}_{46} \mathrm{NO}_{3} \mathrm{Si}^{+}: 580.3242$.
(4aR, 7S, 8S, 8aS)-7-(3,5-Dimethoxyphenyl)-8-((R)-1-((diphenylmethylene)amino)propan-2-yl)-5-(trimethylsilyl)-2,3,4,4a,8,8a-hexahydronaphthalen-1(7H)-one [(-)-16]. White solid: $\mathrm{R}_{\mathrm{f}}=0.38(15 \% \mathrm{EtOAc} /$ hexane $) ; \mathrm{mp} 70-75{ }^{\circ} \mathrm{C}$; NMR data, including 2D NMR correlations, are summarized in Table S1 in the

Supporting Information; IR (thin film) ע 3414, 2951, 1712, 1599, 1460, 1154; $[\alpha]_{\mathrm{D}}=-81\left(\mathrm{c} 0.53, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HRMS (E+) m/z 580.3237 $(\mathrm{M}+\mathrm{H})^{+}$; calculated mass for $\mathrm{C}_{37} \mathrm{H}_{46} \mathrm{NO}_{3} \mathrm{Si}^{+}$: 580.3242 .
(4aS, $7 R, 8 \mathrm{~S}, 8 \mathrm{aR}$)-7-(3,5-Dimethoxyphenyl)-8-((R)-1-((diphenylmethylene)amino)propan-2-yl)-2,3,4,4a,8,8a-hexahydro-naphthalen-1(7H)-one [(-)-17]. To a solution of $(-)-16(50 \mathrm{mg}, 86$ $\mu \mathrm{mol}$) and $5 \mathrm{mLCH} \mathrm{CH}_{3} \mathrm{CN}$ at rt in a Nalgene screw-cap plastic bottle was added 50% aqueous $\mathrm{HBF}_{4}(1.1 \mathrm{~mL})$. The resulting solution was heated to $55^{\circ} \mathrm{C}$ and stirred at that temperature for 12 h . After cooling to rt , the reaction was quenched with saturated aq $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and stirred for 20 min before extracting with $\mathrm{EtOAc}(3 \times 15 \mathrm{~mL})$ and drying $\left(\mathrm{MgSO}_{4}\right)$. The resulting product was purified by flash chromatography ($1 \% \mathrm{Et}_{3} \mathrm{~N}$ in $10 \% \mathrm{EtOAc} /$ hexane) to provide alkene $(-)-17(39 \mathrm{mg}, 77 \mu \mathrm{~mol}, 89 \%)$ as a white solid: $\mathrm{R}_{\mathrm{f}}=0.37\left(1 \% \mathrm{Et}_{3} \mathrm{~N}\right.$ in 10% EtOAc/hexanes); mp $50-53{ }^{\circ} \mathrm{C}$; NMR data, including 2D NMR correlations, are summarized in Table S2 in the Supporting Information; IR (thin film) ν 3443, 2930, 1713, 1598, 1461, 1155; $[\alpha]_{\mathrm{D}}=-165\left(\mathrm{c} 0.49, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ HRMS $(\mathrm{E}+) m / z 508.2842(\mathrm{M}+\mathrm{H})^{+}$; calculated mass for $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{NO}_{3}{ }^{+}$: 508.2847.
(3R,3aS,3a1R,4R,6aS)-4-(3,5-Dimethoxyphenyl)-3-methyl-3,3a,3a1,4,6a,7,8,9-octahydro-2H-benzo[de]quinoline [(-)-18]. To a solution of $(-)-17(99 \mathrm{mg}, 195 \mu \mathrm{~mol})$ in 10 mL THF at rt was added 0.5 M aq TFA $(2 \mathrm{~mL})$. The reaction was warmed to $50^{\circ} \mathrm{C}$ and stirred at that temperature for 4 h . After cooling to rt, the reaction was then quenched with saturated aq $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and stirred for 30 \min before extracting with EtOAc $(3 \times 20 \mathrm{~mL})$ and drying $\left(\mathrm{MgSO}_{4}\right)$. The resulting product was purified by flash chromatography (1% $\left.\mathrm{Et}_{3} \mathrm{~N} / \mathrm{EtOAc}\right)$ to provide imine $(-) \mathbf{- 1 8}(60 \mathrm{mg}, 184 \mu \mathrm{~mol}, 95 \%)$ as a yellow oil: $\mathrm{R}_{\mathrm{f}}=0.38\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.38(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J$ $=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{ddd}, J=9.9,4.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 3.57$ (dd, $J=16.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.39(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{dd}, J=7.9,6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.27-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.88(\mathrm{~m}, 5 \mathrm{H}), 1.70-1.55(\mathrm{~m}, 1 \mathrm{H})$, $1.45(\mathrm{qd}, J=12.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.03(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.5,160.8,144.4,131.9,129.5,109.0,98.2$, 59.5, 55.4, 46.1, 42.9, 41.6, 38.7, 37.6, 32.1, 29.0, 26.5, 12.1; IR (thin film) ν 3435, 2927, 1656, 1605, 1594, 1459; $[\alpha]_{\mathrm{D}}=-221$ (c 0.43, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); HRMS (E+) m/z $326.2109(\mathrm{M}+\mathrm{H})^{+}$; calculated mass for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{2}{ }^{+}: 326.2115$.

5-((3R,3aR,3a1S,4S,6aR)-3-Methyl-3,3a,3a1,4,6a,7,8,9-octahy-dro-2H-benzo[de]quinolin-4-yl)benzene-1,3-diol [(-)-19]. To a solution of $(-)-18(29.5 \mathrm{mg}, 91 \mu \mathrm{~mol})$ in $8 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.45 \mathrm{~mL}, 5$ equiv). After stirring at 0 ${ }^{\circ} \mathrm{C}$ for 2.5 h , the reaction was quenched with saturated aq NaHCO_{3} $(10 \mathrm{~mL})$, extracted with $3 \% \mathrm{MeOH} / \mathrm{EtOAc}(3 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and purified by gradient flash chromatography (10% $\mathrm{MeOH} / \mathrm{CHCl}_{3} \rightarrow 15 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}$) to provided bisphenol $(-)-19(26.5 \mathrm{mg}, 89 \mu \mathrm{~mol}, 98 \%)$ as a white solid: $\mathrm{R}_{\mathrm{f}}=0.43(15 \%$ $\mathrm{MeOH} / \mathrm{CHCl}_{3}$); mp $>280{ }^{\circ} \mathrm{C}$; NMR data, including 2D NMR correlations, are summarized in Table S3 in Supporting Information; IR (thin film) ν 3444, 1637; $[\alpha]_{\mathrm{D}}=-108\left(c 0.012, \mathrm{CHCl}_{3}\right)$; HRMS $(\mathrm{E}+) \mathrm{m} / \mathrm{z} 298.1807(\mathrm{M}+\mathrm{H})^{+}$; calculated mass for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{2}{ }^{+}$: 298.1802.
(R)-Propyl 6,6-dibromo-3-methylhex-5-enoate [(+)-21]. To a solution of (R)-3-methyl-5-oxo-5-propoxypentanoic acid ${ }^{19}$ (92\%ee, $7.6 \mathrm{~g}, 40 \mathrm{mmol})$ in THF (133 mL) at $0{ }^{\circ} \mathrm{C}$ was added via syringe $\mathrm{BH}_{3} \bullet$ DMS ($4.0 \mathrm{~mL}, 44 \mathrm{mmol}, 1.1$ equiv). The resulting solution was allowed to warm to rt and stirred at that temperature for 15 h . The resulting solution was concentrated in vacuo and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added slowly followed by $1: 1 \mathrm{EtOAc} /$ hexane $(40 \mathrm{~mL})$. The resulting mixture was stirred at rt for 15 min after which the mixture was filtered through a plug of SiO_{2} eluting with $1: 1 \mathrm{EtOAc} /$ hexane $(300 \mathrm{~mL})$, and concentrated to provide the corresponding alcohol as a colorless oil ($7.1 \mathrm{~g}, 40 \mathrm{mmol}$, quantitative), which was carried on directly to the next step without further purification: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $4.03(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.52-2.35(\mathrm{~m}, 3 \mathrm{H}), 2.34-2.21(\mathrm{~m}, 2 \mathrm{H})$, $1.73-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.

To a solution of the crude alcohol, $\mathrm{NMO} \bullet \mathrm{H}_{2} \mathrm{O}(7.03 \mathrm{~g}, 60 \mathrm{mmol}$, 1.5 equiv), and crushed $4 \AA$ molecular sieves $(\sim 10 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250$ $\mathrm{mL})$ and $\mathrm{MeCN}(10 \mathrm{~mL})$ at rt was added TPAP $(350 \mathrm{mg}, 2.5 \mathrm{~mol} \%)$
and the reaction was stirred for 3 h when TLC ($30 \% \mathrm{EtOAc} /$ hexane) showed completion. The mixture was diluted with hexane $(250 \mathrm{~mL})$, filtered through a plug of SiO_{2} eluting with $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL})$, and carefully concentrated in vacuo without heating the water bath to give the expectant aldehyde as a light purple oil $(6.8 \mathrm{~g})$ that was carried on directly to the next step without further purification: $\mathrm{R}_{\mathrm{f}}=0.57(30 \%$ EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.75(\mathrm{t}, J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.02(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.24(\mathrm{~m}, 3 \mathrm{H})$, $1.64(\mathrm{tq}, J=11.6,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.03(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H})$.

The aldehyde was then combined with $\mathrm{CBr}_{4}(17.2 \mathrm{~g}, 52 \mathrm{mmol}, 1.3$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mathrm{~mL})$ and cooled to $-20^{\circ} \mathrm{C}$ before adding PPh_{3} ($28.3 \mathrm{~g}, 108 \mathrm{mmol}, 2.7$ equiv) in portions over 20 min . The reaction was allowed to stir at $-20^{\circ} \mathrm{C}$ for 4 h before TLC $\left(20 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $)$ showed completion. The mixture was then diluted with hexane (400 mL), filtered through a plug of SiO_{2} eluting with $20 \% \mathrm{EtOAc} /$ hexane $(400 \mathrm{~mL})$, and concentrated to afford $(+)-21(10.1 \mathrm{~g}, 77 \%$ over three steps, $\sim 90 \%$ purity) as a light yellow oil. An analytical sample was purified by radial chromatography ($5 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane) to give a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.30\left(5 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{Hex}\right)$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 6.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.35-2.27(\mathrm{~m}, 1 \mathrm{H})$, $2.21-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.60(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{~d}, J$ $=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 172.6,136.5,90.0,66.0,40.9,39.6,29.7,21.9,19.6,10.4 ;$ IR (thin film) ν 2964, 2877, 1732, 1619; $[\alpha]_{\mathrm{D}}=+9.2\left(c 1.0, \mathrm{CHCl}_{3}\right) ;$ HRMS (E +) $\mathrm{m} / \mathrm{z} 350.9374(\mathrm{M}+\mathrm{Na})^{+}$; calculated mass for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{NaO}_{2}{ }^{+}$: 350.9389 .
(R)-3-Methyl-6-(trimethylsilyl)hex-5-yn-1-ol [(+)-22]. To a solution of ester (+)-21 ($1.54 \mathrm{~g}, 4.69 \mathrm{mmol})$ in $40 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-15^{\circ} \mathrm{C}$ was added DIBAL (1 M in hexane, $12 \mathrm{~mL}, 2.56 \mathrm{mmol}$) and the resulting reaction mixture was allowed to warm to $25^{\circ} \mathrm{C}$ over 5 h . The reaction was then quenched with 1 M aq Rochelle's salt $(30 \mathrm{~mL})$ and stirred for 30 min before extracting with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, drying $\left(\mathrm{MgSO}_{4}\right)$, and concentrating in vacuo. The resulting product was purified by flash chromatography $(25 \% \mathrm{EtOAc} /$ hexane $)$ to provide the expectant primary alcohol ($1.21 \mathrm{~g}, 4.45 \mathrm{mmol}, 95 \%$) as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.55(30 \% \mathrm{EtOAc} /$ hexane $) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.40$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.59(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{ddd}, J=13.2,7.0,0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.00(\mathrm{dtd}, J=8.2,7.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.73(\mathrm{~m}, 1 \mathrm{H})$, $1.67-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.36(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{dd}, J=6.7,0.8 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.4,89.5,60.9,40.3,39.2$, 29.3, 19.6; IR (thin film) $\nu 3335,2957,2927,1457 ;[\alpha]_{\mathrm{D}}+3$ (c 0.4, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

To a solution of the resulting vinyl dibromide $(1.216 \mathrm{~g}, 4.47 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added via syringe $n-\mathrm{BuLi}(1.6 \mathrm{M}$ solution in hexane, $8.5 \mathrm{~mL}, 3.2$ equiv). The resulting solution was allowed to warm to rt and was stirred at that temperature for 30 min . The reaction mixture was then cooled back to $-78{ }^{\circ} \mathrm{C}, \mathrm{Me}_{3} \mathrm{SiCl}(1.4$ $\mathrm{mL}, 11 \mathrm{mmol}, 1.6$ equiv) was added via syringe, and the resulting mixture was allowed to warm to rt over $4 \mathrm{~h} .5 \%$ aq acetic acid (12 mL) was added and the mixture was stirred vigorously for 30 min at rt before extracting with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo, and purified by flash chromatography ($15 \% \mathrm{EtOAc} /$ hexane) to provide TMSalkyne (+)-22 (760 mg , $4.12 \mathrm{mmol}, 92 \%$ over two steps) as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.38(15 \% \mathrm{EtOAc} /$ hexane $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $3.71(\mathrm{qt}, J=10.7,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 1 \mathrm{H})$, $1.92-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{td}, J=13.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{td}, J=13.9$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 106.1,86.0,61.1,38.9,29.5,27.3,19.8,0.3$; IR (thin film) ν 3352, 2960, 2928, 2173, 1250; $[\alpha]_{\mathrm{D}}+7\left(c 0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HRMS (E+) m/z $185.1364(\mathrm{M}+\mathrm{H})^{+}$; calculated mass for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{OSi}^{+}$: 185.1357.
(R,E)-6-Iodo-3-methyl-6-(trimethylsilyl)hex-5-en-1-ol [(+)-23]. To a solution of alkynol $(+)-22(710 \mathrm{mg}, 3.85 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added via syringe DIBAL (1 M in hexane, $10 \mathrm{~mL}, 2.6$ equiv). The resulting solution was heated to reflux $\left(70^{\circ} \mathrm{C}\right)$ and stirred at that temperature for 24 h . The solution was then cooled to $-78{ }^{\circ} \mathrm{C}$, after which a solution of $\mathrm{I}_{2}\left(4 \mathrm{~g}, 15.76 \mathrm{mmol}, 4\right.$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$ was added dropwise by addition funnel. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 2 h ,
the reaction was carefully quenched by pouring into 1 M HCl (30 $\mathrm{mL})$. The maroon organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed sequentially with saturated aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and brine, dried (MgSO_{4}), and concentrated in vacuo. The crude product was purified by column chromatography ($15 \% \mathrm{EtOAc} /$ hexane) to yield vinyl iodide $(+)-23(865 \mathrm{mg}, 2.77 \mathrm{mmol}, 72 \%)$ as a pale yellow oil: $\mathrm{R}_{\mathrm{f}}=0.38(15 \%$ EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.76-3.61(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.92(\mathrm{~m}, 1 \mathrm{H})$, $1.78-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.31(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.26$ $(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.2,107.8,61.0,42.3,39.4$, 29.9, 19.5, 1.4; IR (thin film) $~$ 3349, 2957, 2927, 1250, 844; $[\alpha]_{\mathrm{D}}+$ $3.3\left(c 0.36 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HRMS $(\mathrm{E}+) \mathrm{m} / z 335.0288(\mathrm{M}+\mathrm{Na})^{+}$; calculated mass for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{IONaSi}^{+}$: 335.0299 .
(R,5Z,7E)-8-(3,5-Dimethoxyphenyl)-3-methyl-6-(trimethylsilyl)-octa-5,7-dien-1-ol [(+)-24]. Vinyl iodide (+)-23 (770 mg, 2.47 mmol) and pinacol boronate $6(1.07 \mathrm{~g}, 3.69 \mathrm{mmol}, 1.5$ equiv) were combined in THF (10 mL) and deionized $\mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{~mL})$. Argon was bubbled through the solution for 30 min , then $\mathrm{KOH}(208 \mathrm{mg}, 3.7 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(715 \mathrm{mg}, 0.62 \mathrm{mmol}, 25 \mathrm{~mol} \%)$ were added and the resulting mixture was heated to $50{ }^{\circ} \mathrm{C}$ and stirred at that temperature for 8 h . After cooling to rt , the reaction was diluted with EtOAc (50 mL), washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The crude product was purified by flash column chromatography ($20 \% \mathrm{EtOAc} /$ hexane) to give the desired diene $(560 \mathrm{mg}, 1.61 \mathrm{mmol}, 65 \%)$ as a pale brown oil: $\mathrm{R}_{\mathrm{f}}=0.25(20 \%$ EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.79$ (dd, $J=15.8$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.38(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.35-$ $6.32(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 3.78-3.65(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.20(\mathrm{~m}, 1 \mathrm{H})$, $2.18-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~s}$, $1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.23(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 161.0,144.0,140.4,139.5,135.6,127.4,104.6,104.3,100.1$, 99.3, 61.2, 55.4, 39.7, 39.4, 30.7, 19.8, 0.8; IR (thin film) $~ 3381,2955$, 1592, 1459; $[\alpha]_{\mathrm{D}}+1.2\left(c 0.33, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HRMS (E+) m/z 349.2200 $(\mathrm{M}+\mathrm{H})^{+}$; calculated mass for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{Si}^{+}$: 349.2194 .

To a solution of the resulting alcohol ($475 \mathrm{mg}, 1.36 \mathrm{mmol}$) in DMSO (8 mL) was added in one portion IBX ($575 \mathrm{~g}, 2.05 \mathrm{mmol}, 1.5$ equiv) and the reaction was stirred at rt for 4 h . The resulting mixture was then diluted with saturated aq $\mathrm{NaHCO}_{3} / \mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extract was washed with 5% aq LiCl , dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo, and purified by flash chromatography ($15 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane) to give aldehyde (+)-24 (410 $\mathrm{mg}, 1.18 \mathrm{mmol}, 87 \%)$ as a pale yellow oil: $\mathrm{R}_{\mathrm{f}}=0.53(10 \% \mathrm{EtOAc} /$ hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.78(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ $(\mathrm{d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.38(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.34(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dd}, J=7.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, $6 \mathrm{H}), 2.53-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.16(\mathrm{~m}, 4 \mathrm{H}), 1.03(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.23(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 202.6, 161.0, $142.5,140.6,140.2,135.3,127.7,104.3,99.4,55.4,50.6,38.9,29.1$, 20.2, 0.8; IR (thin film) ν 2956, 2837, 2719, 1724, 1591; $[\alpha]_{\mathrm{D}}+5.9(c$ $\left.0.27, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HRMS $(\mathrm{E}+) \mathrm{m} / z 369.1850(\mathrm{M}+\mathrm{Na})^{+}$; calculated mass for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{NaO}_{3} \mathrm{Si}^{+}$: 369.1857 .
(2R,3Z,7R,9Z, 1 1E)-12-(3,5-Dimethoxyphenyl)-1-((diphenylmethylene)amino)-2,7-dimethyl-10-(trimethylsilyl)-dodeca-3,9,11-trien-5-one [(-)-25]. To a solution of alkyne (-)-13 $\left(630 \mathrm{mg}, 2.55 \mathrm{mmol}, 2.15\right.$ equiv) in THF $(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise via syringe LDA (2 M in THF, $1.25 \mathrm{~mL}, 2.5 \mathrm{mmol}$). The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h before warming to rt . After stirring for 1 h at rt , the reaction was cooled back to $-78{ }^{\circ} \mathrm{C}$ and transferred via cannula to a stirred solution of aldehyde (+)-24 (410 $\mathrm{mg}, 1.18 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 7 h , then warmed to rt , quenched with solid $\mathrm{NH}_{4} \mathrm{Cl}$, filtered, concentrated, and purified via flash chromatography ($1 \% \mathrm{Et}_{3} \mathrm{~N}$ in $15 \% \mathrm{EtOAc} /$ hexane) to give the diastereomeric mixture of intermediate propargyl alcohols ($673 \mathrm{mg}, 1.13 \mathrm{mmol}, 96 \%$) as a yellow oil. The starting alkyne (-)-13 was recovered in 49% yield: ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.92-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.02(\mathrm{~m}, 7 \mathrm{H})$, $7.00-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.52(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{ddd}, J=7.5,4.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.38$ (dd, $J=14.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.62$ (ddd, $J=13.5,7.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.44$
(ddd, $J=13.5,7.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 6 \mathrm{H}), 3.07(\mathrm{qd}, J=6.8,3.4 \mathrm{~Hz}$, 1 H), 2.26 (ddd, $J=17.8,13.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.91-$ $1.70(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{dd}, J$ $=6.5,1.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.25(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 168.5,161.8,144.5,140.9,140.3,139.7,139.6,137.4,135.8$, $130.3,129.0,128.8,128.5,128.2,127.9,104.9,99.9,61.2,59.6,54.9$, 45.8, 45.6, 39.5, 31.1, 28.7, 19.9, 19.6, 19.4, 0.9; HRMS (E+) m/z $594.3401(\mathrm{M}+\mathrm{H})^{+}$; calculated mass for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{NO}_{3} \mathrm{Si}^{+}$: 594.3398 .

The resulting diastereomeric mixture of alcohols was combined with NMO ($408 \mathrm{mg}, 3.48 \mathrm{mmol}$, 3 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at rt . To the resulting solution was added in portions over 30 min TPAP (102 mg , $0.29 \mathrm{mmol}, 25 \mathrm{~mol} \%$) and the mixture was stirred at rt for 24 h . The resulting reaction mixture was diluted with hexane $(10 \mathrm{~mL})$ and filtered through a plug of silica gel eluting with $50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane. The solution was concentrated and further purified by flash chromatography ($1 \% \mathrm{Et}_{3} \mathrm{~N}$ in $8 \% \mathrm{EtOAc} /$ hexane) to afford the corresponding ketone ($495 \mathrm{mg}, 0.84 \mathrm{mmol}, 72 \%$) as a yellow oil: $\mathrm{R}_{\mathrm{f}}=$ 0.26 (10% EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.86$ (dd, J $=6.6,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.03(\mathrm{~m}, 6 \mathrm{H}), 6.97(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.95-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.52(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dtj}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.39$ $(\mathrm{m}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 6 \mathrm{H}), 3.34-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.47$ (dd, $J=14.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dt}, J=9.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.27$ (dd, $J=$ $14.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{dd}, J=13.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{dt}, J=14.8$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.22(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 186.4,169.0,161.8,143.4,140.8$, $140.4,140.0,137.1,135.6,130.4,128.95,128.87,128.56,128.53$, 128.35, 127.97, 104.9, 100.0, 96.1, 82.4, 58.5, 54.9, 52.8, 39.0, 30.7, 28.8, 19.8, 18.1, 0.8; IR (thin film) ν 2957, 2211, 1670, 1622, 1592; $[\alpha]_{\mathrm{D}}-1.5\left(c \quad 0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HRMS (E+) m/z $592.3244(\mathrm{M}+\mathrm{H})^{+}$; calculated mass for $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{NO}_{3} \mathrm{Si}^{+}$: 592.3242 .

A mixture of the resulting alkynone ($140 \mathrm{mg}, 0.24 \mathrm{mmol}$), Lindlar catalyst ($103 \mathrm{mg}, 48.4 \mu \mathrm{~mol} \mathrm{Pd}, 20 \mathrm{~mol} \%$), pyridine ($0.28 \mathrm{~mL}, 3.47$ mmol, 14.6 equiv), and toluene (5 mL) were stirred vigorously at rt under a H_{2} atmosphere (balloon) for 24 h . The mixture was then filtered through Celite, concentrated in vacuo, and purified by flash chromatography ($1 \% \mathrm{Et}_{3} \mathrm{~N}$ in $8 \% \mathrm{EtOAc} /$ hexane) to provide cis-enone $(-)-25(96 \mathrm{mg}, 0.16 \mathrm{mmol}, 68 \%)$ as a pale yellow oil: $\mathrm{R}_{\mathrm{f}}=0.37(10 \%$ EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.90-7.81(\mathrm{~m}, 2 \mathrm{H})$, $7.15-7.05(\mathrm{~m}, 6 \mathrm{H}), 7.02(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.89(\mathrm{~m}, 2 \mathrm{H})$, $6.80(\mathrm{t}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{dd}, J=15.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{dd}, J=$ $4.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{dd}, J=11.0,10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.92(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=5.9$ $\mathrm{Hz}, 2 \mathrm{H}$), $3.34(\mathrm{~s}, 6 \mathrm{H}), 2.33(\mathrm{dd}, J=15.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25$ (dd, $J=$ $16.2,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.15-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{dd}, J=6.7,1.3 \mathrm{~Hz}, 3 \mathrm{H})$, $0.94(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.26(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ 199.8, 168.0, 161.8, 152.2, 144.0, 140.8, 140.4, 140.0, 137.5, 135.7, 130.1, 128.9, 128.7, 128.5, 127.9, 126.5,104.9, 100.0, 64.8, 59.7, 54.8, $51.2,39.3,35.3,30.5,20.1,18.6,14.4,0.9$; IR (thin film) $\nu 3438,2957$, 1689, 1592; $[\alpha]_{\mathrm{D}}-54\left(c 0.41, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HRMS (E+) m/z 594.3396 $(\mathrm{M}+\mathrm{H})^{+}$; calculated mass for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{NO}_{3} \mathrm{Si}^{+}$: 594.3398.
(2S,3Z,7R,9Z, 11 E)-12-(3,5-Dimethoxyphenyl)-1-((diphenylmethylene)amino)-2,7-dimethyl-10-(trimethylsilyl)-dodeca-3,9,11-trien-5-one [(+)-26]. To a solution of alkyne (+)-13 $\left(1.21 \mathrm{~g}, 4.89 \mathrm{mmol}, 2.07\right.$ equiv) in THF $(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise via syringe LDA (2 M in THF, $2.45 \mathrm{~mL}, 4.9 \mathrm{mmol}$). The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h before warming to rt . After stirring for 1 h at rt , the reaction was cooled back to $-78{ }^{\circ} \mathrm{C}$ and transferred via cannula to a stirred solution of aldehyde (+)-24 (820 $\mathrm{mg}, 2.37 \mathrm{mmol})$ in THF $(7 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 7 h , then warmed to rt , quenched with solid $\mathrm{NH}_{4} \mathrm{Cl}$, filtered, concentrated, and purified via flash chromatography ($1 \% \mathrm{Et}_{3} \mathrm{~N}$ in $15 \% \mathrm{EtOAc} /$ hexane) to give the intermediate propargyl alcohol ($1.25 \mathrm{~g}, 2.10 \mathrm{mmol}, 89 \%$) as a yellow oil. The starting alkyne $(+)-13$ was recovered in 45% yield.

The resulting diastereomeric mixture of alcohols ($1.23 \mathrm{~g}, 2.07$ mmol) was combined with NMO ($735 \mathrm{mg}, 6.27 \mathrm{mmol}, 3$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at rt . To the resulting solution was added in portions over 30 min TPAP ($180 \mathrm{mg}, 0.51 \mathrm{mmol}, 25 \mathrm{~mol} \%$) and the mixture was stirred at rt for 24 h . The resulting reaction mixture was diluted
with hexane $(30 \mathrm{~mL})$ and filtered through a plug of silica gel eluting with $50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane. The solution was concentrated and further purified by flash chromatography ($1 \% \mathrm{Et}_{3} \mathrm{~N}$ in $8 \% \mathrm{EtOAc} /$ hexane) to afford the desired ketone $(1.05 \mathrm{~g}, 1.77 \mathrm{mmol}, 86 \%)$ as a yellow oil.

A mixture of the resulting alkynone ($154 \mathrm{mg}, 0.26 \mathrm{mmol}$), Lindlar catalyst ($110 \mathrm{mg}, 51.7 \mu \mathrm{~mol} \mathrm{Pd}, 20 \mathrm{~mol} \%$), pyridine ($0.42 \mathrm{~mL}, 52$ mmol, 20 equiv), and toluene (8 mL) were stirred vigorously at rt under a H_{2} atmosphere (balloon) for 17 h . The mixture was then filtered through Celite, concentrated in vacuo, and purified by flash chromatography $\left(1 \% \mathrm{Et}_{3} \mathrm{~N}\right.$ in $8 \% \mathrm{EtOAc} /$ hexane $)$ to provide cis-enone $(+)-26(107 \mathrm{mg}, 0.18 \mathrm{mmol}, 69 \%)$ as a pale yellow oil: $\mathrm{R}_{\mathrm{f}}=0.49(15 \%$ EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.90-7.81(\mathrm{~m}, 2 \mathrm{H})$, $7.15-7.05(\mathrm{~m}, 6 \mathrm{H}), 7.01(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.90(\mathrm{~m}, 2 \mathrm{H})$, $6.79(\mathrm{t}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{t}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.40(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{dd}, J=11.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}$, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.35$ $(\mathrm{s}, 6 \mathrm{H}), 2.40-2.04(\mathrm{~m}, 5 \mathrm{H}), 1.16(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.2$ $\mathrm{Hz}, 3 \mathrm{H}), 0.26(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ 199.8, 168.0, 161.8, 152.1, 143.9, 140.8, 140.4, 140.1, 137.6, 135.7, 130.1, 128.89, $128.73,128.50,128.18,127.94,126.6,104.9,100.0,59.7,54.9,51.2$, 39.3, 35.3, 30.5, 20.1, 18.6, 0.9; IR (thin film) ע 3374, 2928, 1688, 1577.9, 1453, 1407; $[\alpha]_{\mathrm{D}}+74.5$ (c 0.11, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); HRMS (E+) m/z $594.3411(\mathrm{M}+\mathrm{H})^{+}$; calculated mass for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{NO}_{3} \mathrm{Si}^{+}$: 594.3398 .

IMDA Cyclization of $(-)-25$. To a solution of (Z)-enone $(-)$-25 ($35 \mathrm{mg}, 59 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ at $-20{ }^{\circ} \mathrm{C}$ was added via syringe $\mathrm{Me}_{2} \mathrm{AlCl}(0.9 \mathrm{M}$ in heptane, $0.1 \mathrm{~mL}, 1.5$ equiv) and the resulting yellow solution was stirred at $-20^{\circ} \mathrm{C}$ for 5 h . The reaction was then quenched with saturated aq $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. Crude ${ }^{1} \mathrm{H}$ NMR analysis showed the IMDA adducts 27:28:29 were produced in a ratio of 1:3:2.9 (exo:endo $=1.4$), respectively. Purification by repetitive flash chromatography ($1 \% \mathrm{Et}_{3} \mathrm{~N}$ in $8 \% \mathrm{EtOAc} /$ hexane) afforded the exo products 27 and 28 in a 1:3 ratio, as determined by ${ }^{1} \mathrm{H}$ NMR analysis ($21 \mathrm{mg}, 35.4 \mu \mathrm{~mol}, 60 \%$) and (+)-29 ($9 \mathrm{mg}, 26 \%$). Note: Using Lewis acid $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ at $0{ }^{\circ} \mathrm{C}$ can switch the initial selectivity of exo adducts 27 and $28(27: 28=1.55: 1$ ratio $)$ and barely no 29 (exo:endo >12). Serial chromatography of the exo-product mixture could improve the ratio to $4: 1$ in favor of 27 . Comparative 1DNMR analysis of $1: 1$ and 4:1 mixtures allowed for peak correlations for 27 and 28 in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. 2D-NMR analysis was conducted on a roughly $1: 1$ mixture of $27: 28$ to determine the absolute stereochemistry of each diastereomer.
(3R,4aS, $7 R, 8 R, 8 a R$)-7-(3,5-Dimethoxyphenyl)-8-((R)-1-((diphenylmethylene)amino)propan-2-yl)-3-methyl-5-(trimethylsil-yl)-2,3,4,4a,8,8a-hexahydronaphthalen-1(7H)-one (27). Could not be separated completely from diastereomer 28. $\mathrm{R}_{\mathrm{f}}=0.35(10 \%$ EtOAc/hexanes); NMR data, including 2D NMR correlations, summarized in Table S4 in Supporting Information; IR (thin film) ν 3443, 2955, 1711, 1599; HRMS (E+) m/z $594.3393(\mathrm{M}+\mathrm{H})^{+}$; calculated mass for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{NO}_{3} \mathrm{SI}^{+}: 594.3398$.
(3R,4aR, 7S, 8S, 8aS)-7-(3,5-Dimethoxyphenyl)-8-((R)-1-((diphenylmethylene)amino)propan-2-yl)-3-methyl-5-(trimethylsil-yl)-2,3,4,4a,8,8a-hexahydronaphthalen-1(7H)-one (28). Could not be separated completely from diastereomer 27. $\mathrm{R}_{\mathrm{f}}=0.35(10 \%$ EtOAc/hexanes); NMR data, including 2D NMR correlations, summarized in Table S5 in Supporting Information; HRMS (E+) $m / z 594.3393(\mathrm{M}+\mathrm{H})^{+}$; calculated mass for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{NO}_{3} \mathrm{SI}^{+}: 594.3398$.
(3R,4aR,7S,8R,8aR)-7-(3,5-Dimethoxyphenyl)-8-((R)-1-((diphenylmethylene)amino)propan-2-yl)-3-methyl-5-(trimethylsil-yl)-2,3,4,4a,8,8a-hexahydronaphthalen-1(7H)-one [(+)-29]. $\mathrm{R}_{\mathrm{f}}=$ 0.37 (12% EtOAc/hexanes); NMR data, including 2D NMR correlations, summarized in Table S6 in Supporting Information; IR (thin film) ν 3444, 2954, 2925, 2859, 1699, 1599; $[\alpha]_{\mathrm{D}}+148$ (c 0.15, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); HRMS (E+) m/z $594.3393(\mathrm{M}+\mathrm{H})^{+}$; calculated mass for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{NO}_{3} \mathrm{SI}^{+}$: 594.3398 .
(3R,4aS, 7R,8R,8aR)-7-(3,5-Dimethoxyphenyl)-8-((S)-1-((diphenylmethylene)amino)propan-2-yl)-3-methyl-5-(trimethylsil-yl)-2,3,4,4a,8,8a-hexahydronaphthalen-1(7H)-one [(+)-30]. To a solution of (Z)-enone $(+)-26(48 \mathrm{mg}, 81 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ was added via syringe $\mathrm{Me}_{2} \mathrm{AlCl}(0.9 \mathrm{M}$ in heptane, 0.18 mL ,

2 equiv) and the resulting yellow solution was stirred at $-20^{\circ} \mathrm{C}$ for 4 h. The reaction was then quenched with saturated aq NaHCO_{3} (5 $\mathrm{mL})$, extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo, and purified by flash chromatography $\left(1 \% \mathrm{Et}_{3} \mathrm{~N}\right.$ in 8% $\mathrm{EtOAc} / \mathrm{hexane}$) to afford exo product (+)-30 ($34.2 \mathrm{mg}, 57.6 \mu \mathrm{~mol}$, 71%) plus a complex mixture of other compounds ($7.8 \mathrm{mg}, \sim 16 \%$) that did not correspond to IMDA cyclization products as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. $\mathrm{R}_{\mathrm{f}}=0.35$ ($10 \% \mathrm{EtOAc} /$ hexanes); mp 60-64 ${ }^{\circ} \mathrm{C}$; NMR data, including 2D NMR correlations, summarized in Table S 7 in Supporting Information. IR (thin film) ν 3446, 2954, 1711, 1600, 1458, 1154; $[\alpha]_{\mathrm{D}}+158.7\left(c 0.046, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HRMS (E+) $m / z 594.3412(\mathrm{M}+\mathrm{H})^{+}$; calculated mass for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{NO}_{3} \mathrm{SI}^{+}: 594.3398$.
(R,5Z,7E)-Propyl 6-Bromo-8-(3,5-dimethylphenyl)-3-methyl-octa-5,7-dienoate [(+)-31]. Method A. ${ }^{25}$ A mixture of dibromide (+)-21 $(6.01 \mathrm{~g}, 18.3 \mathrm{mmol})$, boronate ester $6(5.76 \mathrm{~g}, 19.8 \mathrm{mmol}, 1.1$ equiv) and $\mathrm{Tl}_{2} \mathrm{CO}_{3}\left(17.1 \mathrm{~g}, 36.6 \mathrm{mmol}, 2.0\right.$ equiv) in $4: 1 \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(180$ mL) was degassed by bubbling N_{2} through the mixture for 20 min before adding $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1.05 \mathrm{~g}, 0.91 \mathrm{mmol}, 5 \mathrm{~mol} \%)$. The resulting mixture was allowed to stir at rt for 12 h before filtering through a Buchner funnel, diluting with $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ and extracting with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and purified by gradient flash chromatography $(5 \rightarrow$ $15 \% \mathrm{EtOAc} /$ hexane $)$ to afford diene (+)-31 (5.33 g, $13.0 \mathrm{mmol}, 71 \%$) as a yellow oil.

Method B. A mixture of dibromide (+)-21 ($2.11 \mathrm{~g}, 6.43 \mathrm{mmol}$), boronate ester $6\left(1.96 \mathrm{~g}, 6.75 \mathrm{mmol}, 1.05\right.$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(5.24 \mathrm{~g}$, $16.08 \mathrm{mmol}, 2.5$ equiv), and tri-2-furanylphosphine (TFP, 240 mg , $1.03 \mathrm{mmol}, 16 \mathrm{~mol} \%)$ in $4: 1$ dioxane $/ \mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ was degassed by bubbling argon through the mixture for 30 min before adding $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(175 \mathrm{mg}, 0.19 \mathrm{mmol}, 3 \mathrm{~mol} \%)$. The resulting reaction mixture was stirred at $30^{\circ} \mathrm{C}$ for 12 h and then was diluted with EtOAc $(200 \mathrm{~mL})$, washed with brine $(3 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo, and purified by flash chromatography (5% $\mathrm{EtOAc} /$ hexane $)$ to provide diene $(+)-31(1.75 \mathrm{~g}, 66 \%)$ as a yellow oil: $\mathrm{R}_{\mathrm{f}}=0.47(10 \% \mathrm{EtOAc} /$ hexane $) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.84$ $(\mathrm{d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.38(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H}), 2.53-2.28(\mathrm{~m}, 3 \mathrm{H}), 2.28-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.73-$ $1.55(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.1,161.0,138.5,133.2,132.9,128.4$, 126.7, 104.9, 100.5, 66.1, 55.5, 41.4, 38.7, 30.6, 22.1, 20.0, 10.6; IR (thin film) ν 2962, 2837, 1730, 1590, 1457, 1204, 1154; $[\alpha]_{\mathrm{D}}=+6.5(c$ $0.90, \mathrm{CHCl}_{3}$); HRMS (E+) m/z 433.0995 and $435.0964(\mathrm{M}+\mathrm{Na})^{+}$; calculated mass for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{BrNaO}_{4}{ }^{+}$: 433.0985 and 435.0965 .
($R, 5 E, 7 E$)-8-(3,5-Dimethylphenyl)-3,6-dimethylocta-5,7-dien-1-ol $[(+)-32] .{ }^{25}$ To a solution of vinyl bromide $(+)-31(5.0 \mathrm{~g}, 12.2 \mathrm{mmol})$ and $\operatorname{Pd}\left[\mathrm{P}(t-\mathrm{Bu})_{3}\right]_{2}(75 \mathrm{mg}, 0.24 \mathrm{mmol}, 2.0 \mathrm{~mol} \%)$ in THF $(80 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added slowly via syringe $\mathrm{Me}_{2} \mathrm{Zn}(10 \% \mathrm{w} / \mathrm{w}$ in hexane, 12.8 g , $20 \mathrm{~mL}, 13.4 \mathrm{mmol}, 1.5$ equiv). After 1 h at $0^{\circ} \mathrm{C}$ the reaction was quenched carefully with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(3 \times 50 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to afford the corresponding methylated diene $(4.7 \mathrm{~g},>100 \%)$ as a green oil. This crude reaction product was typically carried on directly to the next step without further purification. An analytical sample was purified by radial chromatography to give a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.33(10 \% \mathrm{EtOAc} /$ hexane $) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.79(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.40(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 2.35(\mathrm{dd}, J=14.5,5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.27-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.09(\mathrm{~m}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}) 1.69-$ $1.59(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.1,160.8,139.8,135.0,134.2,131.9$, $125.9,104.1,99.4,65.8,55.2,41.2,35.3,31.0,21.9,19.8,12.5,10.4$; IR (thin film) ν 2962, 2837, 1731, 1590, 1456, 1424, 1328, 1204, 1153, 1063; $[\alpha]_{\mathrm{D}}=+4.0\left(c 0.90, \mathrm{CHCl}_{3}\right)$.

To a solution of crude ester $(4.7 \mathrm{~g}, \sim 12.2 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(95 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added in one portion $\mathrm{LiAlH}_{4}(0.51 \mathrm{~g}, 13.4 \mathrm{mmol}, 1.1$ equiv). After 1 h at $0^{\circ} \mathrm{C}, 1 \mathrm{M}$ aq Rochelle's salt $(100 \mathrm{~mL})$ was added slowly and the mixture stirred for 1 h before extracting with EtOAc (3
$\times 50 \mathrm{~mL})$, drying $\left(\mathrm{MgSO}_{4}\right)$ and concentration in vacuo to a brown oil $(3.8 \mathrm{~g})$. Purification by flash chromatography ($10 \% \mathrm{EtOAc} /$ hexane) afforded alcohol (+)-32 (3.61 g, 93% over two steps) as a clear colorless oil: $\mathrm{R}_{\mathrm{f}}=0.33(10 \% \mathrm{EtOAc} /$ hexane $) ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.79(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.39(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 6 \mathrm{H}), 3.75-3.64(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{td}, J=13.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.10$ $(\mathrm{td}, J=14.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}) 1.78-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.37$ $(\mathrm{m}, 2 \mathrm{H}), 0.94(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 160.9, 140.0, 134.6, 134.5, 133.0, 125.7, 104.2, 99.4, 61.1, 55.3, 39.5, 35.9, 30.4, 19.7, 12.6; IR (thin film) ע 3356, 2930, 2836, 1589, 1457, 1424, 1203, 1152, 1062; $[\alpha]_{\mathrm{D}}=+3.4\left(c 1.0, \mathrm{CHCl}_{3}\right) ;$ HRMS (E+) m / z $313.1746(\mathrm{M}+\mathrm{Na})^{+}$; calculated mass for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NaO}_{3}{ }^{+}$: 313.1775 .
(R,5E,7E)-8-(3,5-Dimethoxyphenyl)-3,6-dimethylocta-5,7-dienal [(+)-33]. To a solution of alcohol (+)-32 (840 mg, 2.89 mmol$)$ in DMSO (12 mL) at rt was added IBX ($1.21 \mathrm{~g}, 4.32 \mathrm{mmol}, 1.5$ equiv) and the reaction mixture was stirred at rt for 4 h . The resulting mixture was then diluted with saturated aq $\mathrm{NaHCO}_{3} / \mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extract was washed with 5% aq LiCl , dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo, and purified by flash chromatography ($25 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane) to give aldehyde (+)-33 (734 $\mathrm{mg}, 2.55 \mathrm{mmol}, 88 \%)$ as a pale yellow oil: $\mathrm{R}_{\mathrm{f}}=0.67(20 \% \mathrm{EtOAc} /$ hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.76(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ $(\mathrm{d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.34(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H})$, $2.46(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.14(\mathrm{~m}, 4 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J$ $=5.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.6,157.0,135.9$, 131.5, 130.2, 127.6, 122.4, 106.0, 100.3, 98.3, 95.6, 51.5, 51.4, 46.6, 31.6, 25.0, 16.2, 8.7; IR (thin film) ע 3301, 2959, 2724, 2253, 1722, 1593, 1383; $[\alpha]_{\mathrm{D}}=+6\left(c 0.35, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HRMS (E+) m/z 289.1795 $(\mathrm{M}+\mathrm{H})^{+}$; calculated mass for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{3}{ }^{+}$: 289.1798 .
(2R,3Z,7R,9E, $11 E$)-12-(3,5-Dimethoxyphenyl)-1-((diphenylmethylene)amino)-2,7,10-trimethyldodeca-3,9,11-trien5 -one [(-)-34]. To a solution of alkyne (-)-13 (1.6 g, 6.47 mmol$)$ in THF (12 mL) at $-78{ }^{\circ} \mathrm{C}$ was added dropwise LDA (2 M in THF, 3.2 $\mathrm{mL}, 6.4 \mathrm{mmol}$) and the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h before warming to rt . After stirring for 1 h at rt , the reaction was cooled back to $-78{ }^{\circ} \mathrm{C}$ and transferred via cannula to a solution of aldehyde (+)-33 (940 g, 3.26 mmol$)$ in THF $(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 h , then warmed to rt , quenched with solid $\mathrm{NH}_{4} \mathrm{Cl}$, filtered, and concentrated in vacuo. Purification via flash chromatography ($1 \% \mathrm{Et}_{3} \mathrm{~N}$ in $15 \% \mathrm{EtOAc} /$ hexane) afforded the intermediate alcohols ($1.62 \mathrm{~g}, 3.02 \mathrm{mmol}, 93 \%$) as a yellow oil. The starting alkyne (-)-13 was recovered in 46% yield: $\mathrm{R}_{\mathrm{f}}=0.27$ ($20 \% \mathrm{EtOAc} /$ hexane) .

The resulting diastereomeric mixture of alcohols was combined with $\mathrm{NMO}\left(1.06 \mathrm{mg}, 9.04 \mathrm{mmol}, 3\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. To this solution at rt was added in portions over 30 min TPAP ($266 \mathrm{mg}, 0.76$ mmol, $25 \mathrm{~mol} \%$) and the mixture was stirred at rt for 24 h . The resulting reaction was diluted with hexane $(20 \mathrm{~mL})$, filtered through a plug of silica gel eluting with $50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane, concentrated in vacuo, and further purified by flash chromatography $\left(1 \% \mathrm{Et}_{3} \mathrm{~N}\right.$ in 15% $\mathrm{Et}_{2} \mathrm{O} /$ hexane $)$ to provide the corresponding alkynone ($1.29 \mathrm{~g}, 2.42$ $\mathrm{mmol}, 80 \%)$ as a pale yellow oil: $\mathrm{R}_{\mathrm{f}}=0.50$ (20\% EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.89-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.03(\mathrm{~m}, 6 \mathrm{H})$, $6.94(\mathrm{dd}, J=5.1,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=$ $1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{dd}, J=11.8,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.43 (dd, $J=13.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.37$ (s, 6H), 3.32 (dd, $J=13.7,6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.93(\mathrm{~h}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=14.8,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.35-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{dt}, J=13.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{dt}, J=14.6$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ 186.2, 168.6, 161.4, 140.2, 139.7, 136.7, 135.1, 134.4, 131.8, 130.0, 128.6, 128.5, 128.2, 127.97, 127.60, 126.4, 104.6, 99.7, 95.6, 82.0, 58.2, 54.5, 52.2, 35.1, 30.2, 28.4, 19.4, 17.7, 12.3; IR (thin film) $\nu 2931,2209,1669,1592,1381 ;[\alpha]_{\mathrm{D}}=+2(c$ $0.68, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); HRMS (E+) m/z $534.3014(\mathrm{M}+\mathrm{H})^{+}$; calculated mass for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{NO}_{3}{ }^{+}$: 534.3003 .

A mixture of the resulting alkynone ($400 \mathrm{mg}, 0.75 \mathrm{mmol}$), Lindlar catalyst ($320 \mathrm{mg}, 0.15 \mathrm{mmol} \mathrm{Pd}, 20 \mathrm{~mol} \%$), pyridine ($0.9 \mathrm{~mL}, 11.25$ mmol, 15 equiv), and toluene (6 mL) were stirred vigorously at rt
under a H_{2} atmosphere (balloon) for 24 h . The mixture was then filtered through Celite, concentrated in vacuo, and purified by flash chromatography ($1 \% \mathrm{Et}_{3} \mathrm{~N}$ in $8 \% \mathrm{EtOAc} /$ hexane) to provide cis-enone $(-)-34(245 \mathrm{mg}, 0.45 \mathrm{mmol}, 61 \%)$ as a pale yellow oil: $\mathrm{R}_{\mathrm{f}}=0.33(10 \%$ EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.89-7.82(\mathrm{~m}, 2 \mathrm{H})$, $7.14-7.03(\mathrm{~m}, 6 \mathrm{H}), 6.99-6.89(\mathrm{~m}, 3 \mathrm{H}), 6.80(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.53$ $(\mathrm{d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{dd}, J=11.5,9.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.12$ $(\mathrm{m}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 6 \mathrm{H}), 2.31-1.90(\mathrm{~m}, 5 \mathrm{H})$, $1.75(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ 200.0, 168.0, 161.8, 152.0, 140.6, 140.4, $137.5,135.3,134.8,132.7,130.1,128.9,128.7$, 128.2, 127.94, 126.7, 126.6, 105.0, 100.1, 59.8, 54.9, 51.1, 35.7, 35.3, 30.4, 20.1, 18.6, 12.7; IR (thin film) ν 2957, 1688, 1592, 1380; $[\alpha]_{\mathrm{D}}-50.4$ (c 0.47, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); HRMS (E+) $m / z 536.3165(\mathrm{M}+\mathrm{H})^{+}$; calculated mass for $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{NO}_{3}{ }^{+}$: 536.3160 .

IMDA Cylization of $(-)-34$. To a solution of (Z)-enone $(-)$-34 $(65 \mathrm{mg}, 121 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added via syringe $\mathrm{Me}_{2} \mathrm{AlCl}$ (0.9 M in heptane, $0.2 \mathrm{~mL}, 1.5$ equiv) and the resulting yellow solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 12 h . The reaction was then quenched with saturated aq $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 $\times 10 \mathrm{~mL})$, washed with brine $(2 \times 5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to provide a yellow residue $(43 \mathrm{mg}, 80 \mu \mathrm{~mol}$, $66 \%) .{ }^{1} \mathrm{H}$ NMR analysis of this crude reaction mixture showed a 2.6:2.6:16.1:1.0 of the four possible diastereomers (exo:endo 1.0:3.4). This residue was purified by flash chromatography ($1 \% \mathrm{Et}_{3} \mathrm{~N}$ in 8% $\mathrm{EtOAc} /$ hexane $)$ to afford endo-chair product (+)-35 ($34 \mathrm{mg}, 63 \mu \mathrm{~mol}$, 52%) as a white solid.
(3R,4aR,7S,8R,8aR)-7-(3,5-Dimethoxyphenyl)-8-((R)-1-((diphenylmethylene)amino)propan-2-yl)-3,5-dimethyl-2,3,4,4a,8,8a-hexahydronaphthalen-1(7H)-one [(+)-35]. White solid, $\mathrm{R}_{\mathrm{f}}=0.38$ ($10 \% \mathrm{EtOAc} /$ hexanes); mp $138-145{ }^{\circ} \mathrm{C}$; NMR data, including 2D NMR correlations, summarized in Table S8 in Supporting Information. IR (thin film) ν 3443, 2954, 2926, 1700, 1599; $[\alpha]_{\mathrm{D}}+149\left(c\right.$ 0.18, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HRMS (E+) m/z 536.3163 (M $+\mathrm{H})^{+}$; calculated mass for $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{NO}_{3}{ }^{+}: 536.3160$.

Isomerization of (Z)-Enone $(-)-34$. To a solution of (Z)-enone $(-)-34(55 \mathrm{mg}, 103 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ was added via syringe $\mathrm{Me}_{2} \mathrm{AlCl}$ (0.9 M in heptane, $0.17 \mathrm{~mL}, 1.5$ equiv) and the resulting yellow solution was stirred at $-15^{\circ} \mathrm{C}$ for 4 h . The reaction was quenched with saturated aq $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo, and purified by flash chromatography to afford the corresponding (E)-enone (2R,3E,7R,9E,11E)-12-(3,5-dimethoxyphen-yl)-1-((diphenylmethylene)-amino)-2,7,10-trimethyldodeca-3,9,11-trien-5-one as the sole product (38 $\mathrm{mg}, 70 \mu \mathrm{~mol}, 68 \%):$ Colorless oil; $\mathrm{R}_{\mathrm{f}}=0.40$ ($15 \% \mathrm{EtOAc} /$ hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.88-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.04$ (m, $6 \mathrm{H}), 6.97-6.88(\mathrm{~m}, 4 \mathrm{H}), 6.78(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.50(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=16.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 6 \mathrm{H}), 3.35-3.26(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.60(\mathrm{~m}, 1 \mathrm{H})$, 2.37 (dd, $J=15.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{dq}, J=19.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-$ $2.09(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{dt}, J=14.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ 198.3, 168.0, 161.4, 149.7, 140.2, 139.9, 137.1, 135.0, 134.4, 132.3, 129.9, 129.6, 128.5, 128.5, 128.09, 127.99, 127.8, 127.6, 126.4, 104.6, 99.7, 58.8, 54.5, 46.9, 38.3, 35.4, 30.1, 19.8, 17.2, 12.4; IR (thin film) ν 3439, 2958, 2929, 1665, 1622, 1592; $[\alpha]_{\mathrm{D}}-9.3$ (c 0.45, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); HRMS (E+) m/z $536.3166(\mathrm{M}+\mathrm{H})^{+}$; calculated mass for $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{NO}_{3}{ }^{+}: 536.3160$.

ASSOCIATED CONTENT

(S) Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b01677.

Author contributions, expansion of alkene region in crude ${ }^{1} \mathrm{H}$ NMR spectrum for IMDA cyclization of $(-)-34$, tabular NMR data, including 2D correlations, for compounds (-)-16, (-)-17, (-)-19, 27, 28, (+)-29,
$(+)-30$, and (+)-35, and NMR spectra for new products (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: chruma@scu.edu.cn.

Present Address

${ }^{\text {§ }}$ (J.P.B.) Institute of Applied Cancer Science, MD Anderson Cancer Center, Houston, Texas 77054, United States.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support provided by the NSFC (Nos. 21372159, J1310008, and J1103315) and the University of Virginia (UVA) Institute on Aging. We thank Prof. J. A. Marshall (UVA) for generously providing multigram quantities of O-TBDPSprotected $(S)-(+)$-Roche ester. J.P.B. was supported by a Presidential Fellowship from the UVA Graduate School of Arts \& Sciences. Compound characterization (NMR, HRMS, IR) was performed by the Comprehensive Specialized Laboratory Training Platform, College of Chemistry, Sichuan University.

REFERENCES

(1) (a) Roush, W. R. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon Press: Oxford, 1992; Vol. 5, p 513. (b) Heravi, M. M.; Vavsari, V. F. RSC Adv. 2015, 5, 50890. (c) Juhl, M.; Tanner, D. Chem. Soc. Rev. 2009, 38, 2983.
(2) (a) Burke, J. P.; Sabat, M.; Iovan, D. A.; Meyers, W. H.; Chruma, J. J. Org. Lett. 2010, 12, 3192. (b) Burke, J. P.; Sabat, M.; Meyers, W. H.; Chruma, J. J. Tetrahedron: Asymmetry 2011, 22, 31. (c) Burke, J. P., Ph.D. thesis, University of Virginia, 2010.
(3) Kita, M.; Kondo, M.; Koyama, T.; Yamada, K.; Matsumoto, T.; Lee, K.; Woo, J.; Uemura, D. J. Am. Chem. Soc. 2004, 126, 4794.
(4) Kita, M.; Ohishi, N.; Washida, K.; Kondo, M.; Koyama, T.; Yamada, K.; Uemura, D. Bioorg. Med. Chem. 2005, 13, 5253.
(5) (a) Zou, Y.; Che, Q.; Snider, B. B. Org. Lett. 2006, 8, 5605. (b) Snider, B. B.; Che, Q. Angew. Chem., Int. Ed. 2006, 45, 932.
(6) Kim, J.; Thomson, R. J. Angew. Chem., Int. Ed. 2007, 46, 3104.
(7) (a) Sammakia, T.; Johns, D. M.; Kim, G.; Berliner, M. A. J. Am. Chem. Soc. 2005, 127, 6504. (b) Jauch, J. Angew. Chem., Int. Ed. 2000, 39, 2764. (c) Reiser, U.; Jauch, J.; Herdtweck, E. Tetrahedron: Asymmetry 2000, 11, 3345.
(8) For other studies toward the symbioimines via an externally activated endo-IMDA route: (a) Varseev, G. N.; Maier, M. E. Angew. Chem., Int. Ed. 2006, 45, 4767. (b) Sakai, E.; Araki, K.; Takamura, H.; Uemura, D. Tetrahedron Lett. 2006, 47, 6343. (c) Varseev, G. N.; Maier, M. E. Org. Lett. 2007, 9, 1461.
(9) (a) Zschiesche, R.; Grimm, E. L.; Reissig, H.-V. Angew. Chem., Int. Ed. Engl. 1986, 25, 1086. (b) Coe, J. W.; Roush, W. R. J. Org. Chem. 1989, 54, 915. (c) Hirama, M.; Uei, M. J. Am. Chem. Soc. 1982, 104, 4251. (d) Taber, D. F.; Gunn, B. P. J. Am. Chem. Soc. 1979, 101, 3992. (e) Born, S.; Bacani, G.; Olson, E. E.; Kobayashi, Y. Synlett 2008, 18, 2877.
(10) (a) Maruoka, K.; Imoto, H.; Yamamoto, H. J. Am. Chem. Soc. 1994, 116, 12115. (b) Saito, S.; Yamamoto, H. Chem. Commun. 1997, 1585.
(11) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.
(12) (a) Boeckman, R. K., Jr.; Barta, T. E. J. Org. Chem. 1985, 50, 3421. (b) Roush, W. R.; Kageyama, M.; Riva, R.; Brown, B. B.; Warmus, J. S.; Moriaty, K. J. J. Org. Chem. 1991, 56, 1192. (c) Roush, W. R.; Sciotti, R. J. J. Am. Chem. Soc. 1998, 120, 7411.
(13) Su and Song recently demonstrated that geminal bis(siliane)methines can effectively induce exo selectivity for intermolecular DielsAlder cycloadditions: Liu, Z.; Lin, X.; Su, Z.; Hu, C.; Xiao, P.; He, Y.; Song, Z. J. Am. Chem. Soc. 2016, 138, 1877.
(14) Dodziuk, H. J. Mol. Struct. 1974, 20, 317.
(15) Heffron, T. P.; Jamison, T. F. Org. Lett. 2003, 5, 2339.
(16) Unless noted otherwise, all reported isolated yields represent an average of at least three runs at different scales.
(17) Kwan, E. E.; Huang, S. G. Eur. J. Org. Chem. 2008, 2008, 2671.
(18) The possibility of a boat conformation in the connecting chain cannot be excluded rigorously at this time.
(19) Ito, H.; Inoue, T.; Iguchi, K. Org. Lett. 2008, 10, 3873.
(20) O'Donnell, M. J.; Polt, R. L. J. Org. Chem. 1982, 47, 2663.
(21) Williams, D. B. G.; Lawton, M. J. Org. Chem. 2010, 75, 8351.
(22) Kim, C. H.; Shin, H. J.; Yu, W. K.; Woo, W.; Jung, S. K.; Lee, S. K. Chem. - Asian J. 2008, 3, 1523.
(23) (a) Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512. (b) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlien, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. Organometallics 2010, 29, 2176.
(24) Bonazzi, S., Ph.D. Thesis, Swiss Federal Institute of Technology, 2009.
(25) Burke, J. P., Ph.D. Thesis, University of Virginia, 2010.
(26) In our previous studies involving the Lewis acid-mediated IMDA cycloaddition of Boc-protected amine 3a (ref 2a), all other Lewis acids either generated decomposition products or did not affect any reaction. Accordingly, we did not investigate any other Lewis acids beyond dialkylaluminum chlorides and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ for the IMDA cyclization of (-)-25.
(27) Attempts to convert the TMS group of 27 into a methyl group so as to access the neosymbioimine carbon skeleton currently have not met with success. Alternative strategies employing different bulky silyl groups that are more amenable to conversion to the methyl moiety are under consideration.

[^0]: Received: July 13, 2016
 Published: August 26, 2016

